基于RLS算法和LMS的自适应滤波器的MATLAB程序

基于RLS算法和LMS的自适应滤波器的MATLAB程序,第1张

% RLS算法

randn('seed', 0)

rand('seed', 0)

NoOfData = 8000 % Set no of data points used for training

Order = 32 % 自适应滤波权数

Lambda = 0.98 % 遗忘瞎友因子

Delta = 0.001 % 相关矩阵R的初始化

x = randn(NoOfData, 1) %高斯随机系列

h = rand(Order, 1) % 系统随机抽样

d = filter(h, 1, x) % 期望输出

% RLS算法的初始化

P = Delta * eye ( Order, Order ) %相关矩阵

w = zeros ( Order, 1 ) %滤波系数矢量的初始化

% RLS Adaptation

for n = Order : NoOfData

u = x(n:-1:n-Order+1) %延时函数

pi_ = u' * P %互相关函数

k = Lambda + pi_ * u

K = pi_'/k%增益矢量

e(n) = d(n) - w' * u %误差函数

w = w + K * e(n) %递归公式

PPrime = K * pi_

P = ( P - PPrime ) / Lambda %误差相关矩阵

w_err(n) = norm(h - w) %真实估计散哪误差

end

% 作图表示结果

figure

plot(20*log10(abs(e))) %| e |的误差曲线

title('学习曲线')

xlabel('迭代次数')

ylabel('输出误差估计')

figure

semilogy(w_err) %作实际估计误差图

title('矢量估计误差')

xlabel('迭代次数')

ylabel('误差权矢量')

%lms 算法

clear all

close all

hold off%系统信道权数

sysorder = 5 %抽头数

N=1000%总采样次数

inp = randn(N,1)%产生高斯随机系列

n = randn(N,1)

[b,a] = butter(2,0.25)

Gz = tf(b,a,-1)%逆变换函数

h= [0.09760.28730.33600.22100.0964]%信道特性向量

y = lsim(Gz,inp)%加入噪声

n = n * std(y)/(10*std(n))%噪声信号

d = y + n%期望输出信号

totallength=size(d,1)%步长

N=60 %60节点作为训练序列

%算法的开始

w = zeros ( sysorder , 1 ) %初始化

for n = sysorder : N

u = inp(n:-1:n-sysorder+1) % u的矩阵

y(n)= w' * u%系统输出

e(n) = d(n) - y(n) %误差

if n <20

mu=0.32

else

mu=0.15

end

w = w + mu * u * e(n) %迭代方程

end

%检验结果

for n = N+1 : totallength

u = inp(n:-1:n-sysorder+1)

y(n) = w' * u

e(n) = d(n) - y(n) %误差

end

hold on

plot(d)

plot(y,'r')

title('系统输出')

xlabel('样本')

ylabel('实际输出')

figure

semilogy((abs(e))) % e的绝对值坐标

title('误差曲线')

xlabel('样本')

ylabel('误差矢量')

figure%作图

plot(h, 'k+')

hold on

plot(w, 'r*')

legend('实际权矢量','估计权矢量')

title('比磨掘槐较实际和估计权矢量')

axis([0 6 0.05 0.35])

clear all

close all

N=10%滤波器阶数

sample_N=500%采样点数

A=1%信号幅度

snr=10%信噪比

t=1:sample_N

length_t=100%期望信号序列长度

d=A*sin(2*pi*t/length_t)%期望信号猜李腊

M=length(d)%M为接收数据长度

x=awgn(d,snr)%经过信道(加噪声)

delta=1/(10*N*(A^2))%计算能够使LMS算法收敛的delta

y=zeros(1,M)

h=zeros(1,N)%LMS滤波器系数

h_normalized=zeros(1,N)%归一化LMS滤波器系数

y1=zeros(1,N)

for n=N:M %系数调整LMS算法

x1=x(n:-1:n-N+1)

%LMS算法

y(n)=h*x1'

e(n)=d(n)-y(n)

h=h+delta*e(n)*x1

%NLMS算法扰森

y_normalized(n)=h_normalized*x1'

e_normalized(n)=d(n)-y_normalized(n)

h_normalized=h_normalized+e_normalized(n)*x1/(x1*x1')

end

error=e.^2%LMS算穗滑法每一步迭代的均方误差

error_normalized=e_normalized.^2%NLMS算法每一步迭代的均方误差

for n=N:M %利用求解得到的h,与输入信号x做卷积,得到滤波后结果

x2=x(n:-1:n-N+1)

y1(n)=h*x2'

y2(n)=h_normalized*x2'

end

subplot(411)

plot(t,d)

axis([1,sample_N,-2,2])

subplot(412)

plot(t,x)

subplot(413)

plot(t,y)

subplot(414)

plot(t,y_normalized)

figure(2)

plot(t,error,'r',t,error_normalized,'b')


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12569977.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-26
下一篇 2023-05-26

发表评论

登录后才能评论

评论列表(0条)

保存