排列组合公式a和c计算方法

排列组合公式a和c计算方法,第1张

排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。

数学排列组合公式

排列a与组合c计算方法

计算方法如下:

排列A(n,m)=n×(n-1)(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)

组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;

例如A(4,2)=4!/2!=43=12

C(4,2)=4!/(2!2!)=43/(21)=6

公式P是指排列,从N个元素取R个进行排列。
公式C是指组合,从N个元素取R个,不进行排列。
N-元素的总个数
R参与选择的元素个数
!-阶乘 ,如 9!=987654321从N倒数r个,表达式应该为n(n-1)(n-2)(n-r+1); 因为从n到(n-r+1)个数为n-(n-r+1)=r举例:Q1: 有从1到9共计9个号码球,请问,可以组成多少个三位数?A1: 123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。 上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合, 我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有987个三位数。计算公式=P(3,9)=987,(从9倒数3个的乘积)Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。 上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=987/321

奥林匹克书上有```
P什么的``很难写
排列数,从n个中取m个排一下,有n(n-1)(n-2)(n-m+1)种,即n!/(n-m)!
组合数,从n个中取m个,相当于不排,就是n!/[(n-m)!m!]

排列组合计算公式如下:

1、从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。

2、从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。

排列就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。

排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。 排列组合与古典概率论关系密切。

扩展资料

排列组合的发展历程:

根据组合学研究与发展的现状,它可以分为如下五个分支:经典组合学、组合设计、组合序、图与超图和组合多面形与最优化。

由于组合学所涉及的范围触及到几乎所有数学分支,也许和数学本身一样不大可能建立一种统一的理论。

然而,如何在上述的五个分支的基础上建立一些统一的理论,或者从组合学中独立出来形成数学的一些新分支将是对21世纪数学家们提出的一个新的挑战。

参考资料:

百度百科—排列组合

排列组合A(n,m)和的 C(n,m)的计算公式分别如下图所示:

排列计算公式 :从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示。 p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1)

计算举例如下图所示:

扩展资料:

1、组合数,是指从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。

2、排列数,就是从n个不同元素中,任取m(m≤n)个元素(被取出的元素各不相同),按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。

参考资料:

百度百科_排列数公式

在Office的word里面有个公式编辑器。打开word——工具——自定义——命令——插入——往下拉,看到公式编辑器,把它拉到上面的快捷栏里面去,以后用起来就方便了~
希望采纳

Pmn=n!/(n-m)! 是这样从n个数里找出m个做排列,第一个数时有n种选择,地二个数时有n-1个选择,第三个数时有n-2个选择,依次类推第m个数时有n-m+1种选择,即Pmn=n(n-1)(n-2)……(n-m+1)=n(n-1)(n-2)……2×1/(n-m)(n-m-1)……2×1=n!/(n-m)!
Cnm=n!/[m!(n-m)!]是这样得来的:在做排列Pmn的时候先从m个数里选出n来(即Cnm),再把这n个数做排列,最终结果是Pmn,而n个数排列即有n!种排法,即Cnmn!=Pmn,可得Cnm=n!/[m!(n-m)!]
举个例子吧:
箱子里有五个不同颜色小球,我从其中取出两个,
会有几种结果?(取出先后不同,结果也算不同)
列式子为p52,即5!/(5-2)!=(54321)/(321)=20种结果
这是排列
箱子里有五个不同颜色小球,我从其中取出两个,
会有几种结果?(取出先后不同,结果也算相同)
列式子为:c52=5!/(2!3!)=(54321)/(32121)=10
这是组合


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12660332.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-27
下一篇 2023-05-27

发表评论

登录后才能评论

评论列表(0条)

保存