你的数据应该用交叉列联表做,数据录入格式为:建立两个变量,变量1是组别,
正常对照组用数据1表示,病例组用数据2表示;变量2是疗效等分类变量,用1表示分类属性1,用2表示分类属性2,
还有一个变量3是权重,例数
数据录入完成后,先加权频数后点analyze-descriptive statistics-crosstabs-把变量1选到rows里
,把变量2选到column里,然后点击下面的statistics,打开对话框,勾选chi-squares,
然后点continue,再点ok,出来结果的第3个表就是你要的卡方检验,第一行第一个数是卡方值,
后面是自由度,然后是P值。这是一个很重要,但是也是很空洞的问题,希望我以下的分析能让你解开疑惑。
(1)首先说到假设检验,那就要明确原假设H0和备选假设H1
(2)然后建立假设检验的统计量ξ,并建立相应的拒绝域(如果单单是为了得到P值可以省略)
(3)假设H0成立,推导出检验统计量ξ的概率分布函数F(x),或者近似分布函数
(4)根据样本计算检验统计量的具体数值,设为T
(5)判断检验是单边还是双边:
①单边检验的话,直接看F(T)的值,
当F(T)>05, P=F(T)
当F(T)<05, P=1-F(T)
②双边检验的话,
当F(T)>05, P=2F(T)-1
当F(T)<05, P=2F(T)
仔细体会上面的一段话,其实说白了就是“P值是H0允许的最小犯错概率” 。
统计学中,P值是用来判定假设检验结果的一个参数。
如果P值很小,说明原假设情况的发生的概率很小,且P值越小,表明结果越显著。
为理解P值的计算过程,用Z表示检验的统计量,ZC表示根据样本数据计算得到的检验统计量值。
左侧检验 H0:μ≥μ0 vs H1:μ<μ0
P值是当μ=μ0时,检验统计量小于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值 = P(ZC≤Z|μ=μ0)
右侧检验 H0:μ≤μ0 vs H1:μ>μ0
P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值 = P(ZC≥Z|μ=μ0)
双侧检验 H0:μ=μ0 vs H1:μ≠μ0
P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值 = 2P(ZC≥|Z||μ=μ0)
扩展资料:
t检验主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。T检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与f检验、卡方检验并列。
单总体t检验是检验一个样本平均数与一个已知的总体平均数的差异是否显著。当总体分布是正态分布,如总体标准差未知且样本容量小于30,那么样本平均数与总体平均数的离差统计量呈t分布。
双总体t检验又分为两种情况,一是独立样本t检验(各实验处理组之间毫无相关存在,即为独立样本),该检验用于检验两组非相关样本被试所获得的数据的差异性;一是配对样本t检验,用于检验匹配而成的两组被试获得的数据或同组被试在不同条件下所获得的数据的差异性,这两种情况组成的样本即为相关样本。
参考资料来源:百度百科--t检验
你的数据应该用交叉列联表做,数据录入格式为:建立两个变量,变量1是组别,
正常对照组用数据1表示,病例组用数据2表示;变量2是疗效等分类变量,用1表示分类属性1,用2表示分类属性2,
还有一个变量3是权重,例数
数据录入完成后,先加权频数后点analyze-descriptive statistics-crosstabs-把变量1选到rows里
,把变量2选到column里,然后点击下面的statistics,打开对话框,勾选chi-squares,
然后点continue,再点ok,出来结果的第3个表就是你要的卡方检验,第一行第一个数是卡方值,
后面是自由度,然后是P值。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)