椭圆方程共分两种情况:
当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0)。
当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0); 其中a^2-c^2=b^2。
椭圆方程介绍
在数学中,椭圆是围绕两个焦点的平面中的曲线,使得对于曲线上的每个点,到两个焦点的距离之和是恒定的。
因此,它是圆的概括,其是具有两个焦点在相同位置处的特殊类型的椭圆,椭圆的形状(如何“伸长”)由其偏心度表示,对于椭圆可以是从0(圆的极限情况)到任意接近但小于1的任何数字。
PF1|+|PF2|=2a (2a>|F1F2|)
椭圆(Ellipse)是平面内到定点F1、F2的距离之和等于常数(大于|F1F2|)的动点P的轨迹,F1、F2称为椭圆的两个焦点。其数学表达式为:|PF1|+|PF2|=2a(2a>|F1F2|)。椭圆是圆锥曲线的一种,即圆锥与平面的截线。
扩展资料:
在数学中,椭圆是围绕两个焦点的平面中的曲线,使得对于曲线上的每个点,到两个焦点的距离之和是恒定的。因此,它是圆的概括,其是具有两个焦点在相同位置处的特殊类型的椭圆。椭圆的形状(如何“伸长”)由其偏心度表示,对于椭圆可以是从0(圆的极限情况)到任意接近但小于1的任何数字。
椭圆是封闭式圆锥截面:由锥体与平面相交的平面曲线。椭圆与其他两种形式的圆锥截面有很多相似之处:抛物线和双曲线,两者都是开放的和无界的。圆柱体的横截面为椭圆形,除非该截面平行于圆柱体的轴线。
椭圆也可以被定义为一组点,使得曲线上的每个点的距离与给定点(称为焦点)的距离与曲线上的相同点的距离的比值给定行(称为directrix)是一个常数。该比率称为椭圆的偏心率。也可以这样定义椭圆,椭圆是点的集合,点其到两个焦点的距离的和是固定数。
参考资料来源:百度百科-椭圆
你好!椭圆形
oval 英[ˈəʊvl] 美[ˈoʊvl]
adj 椭圆形的; 卵形的;
n 椭圆形; 椭圆运动场(等); 椭圆,美式足球用球; [物] 卵形线;
[例句]He was a man in his late thirties, with fine, dark hair and a pale oval face
他年近四十,头发乌黑亮泽,长着一张苍白的鹅蛋脸。椭圆的极坐标方程ρ=ep/(1-ecosθ)是以左焦点F1为极点O,射线F1F2为极轴,依据椭圆的第二定义得来
此时极点到椭圆的左准线是p,椭圆的任意点P(ρ,θ)满足
ρ/(p+ρcosθ)=e
--->ρ=ep+eρcosθ
--->ρ(1-ecosθ)=ep
--->ρ=ep/(1-ecosθ)(0<e<1)这就是椭圆的极坐标方程。如果令e=1骄傲抛物线的方程,e>1就是双曲线方程
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)