放大器传递函数怎么确定

放大器传递函数怎么确定,第1张

根据运放的虚短虚断,结合电容电感的特性列出微分方程,然后两边拉氏变换求出传递函数
相关资料:
传递函数是指零初始条件下线性系统响应(即输出)量的拉普拉斯变换(或z变换)与激励(即输入)量的拉普拉斯变换之比。记作G(s)=Y(s)/U(s),其中Y(s)、U(s)分别为输出量和输入量的拉普拉斯变换。传递函数是描述线性系统动态特性的基本数学工具之一,经典控制理论的主要研究方法——频率响应法和根轨迹法——都是建立在传递函数的基础之上。传递函数是研究经典控制理论的主要工具之一。
运算放大器(简称“运放”)是具有很高放大倍数的电路单元。在实际电路中,通常结合反馈网络共同组成某种功能模块。它是一种带有特殊耦合电路及反馈的放大器。其输出信号可以是输入信号加、减或微分、积分等数学运算的结果。 由于早期应用于模拟计算机中,用以实现数学运算,故得名“运算放大器”。运放是一个从功能的角度命名的电路单元,可以由分立的器件实现,也可以实现在半导体芯片当中。随着半导体技术的发展,大部分的运放是以单芯片的形式存在。运放的种类繁多,广泛应用于电子行业当中。
虚短、虚断是模拟电路中理想集成运放的两个重要概念。
“虚短”是指在理想情况下,两个输入端的电位相等,就好像两个输入端短接在一起,但事实上并没有短接,称为“虚短”。虚短的必要条件是运放引入深度负反馈。
“虚断”指在理想情况下,流入集成运算放大器输入端电流为零。这是由于理想运算放大器的输入电阻无限大,就好像运放两个输入端之间开路。但事实上并没有开路,称为“虚断”。

拉普拉斯变换是傅里叶变换的扩展,傅里叶变换是拉普拉斯变换的特例,z变换是离散的傅里叶变换在复平面上的扩展。

傅立叶变换是最基本得变换,由傅里叶级数推导出。傅立叶级数只适用于周期信号,把非周期信号看成周期T趋于无穷的周期信号,就推导出傅里叶变换,能很好的处理非周期信号的频谱。但是傅立叶变换的弱点是必须原信号必须绝对可积,因此适用范围不广。

拉普拉斯变换是傅立叶变换的推广,傅立叶变换不适用于指数级增长的函数,而拉氏变换相当于是带有一个指数收敛因子的傅立叶变换,把频域推广到复频域,能分析的信号更广。然而缺点是从拉普拉斯变换的式子中,只能看到变量s,没有频率f的概念。

如果说拉普拉斯变换专门分析模拟信号,那Z变换就是专门分析数字信号,Z变换可以把离散卷积变成多项式乘法,对离散数字系统能发挥很好的作用。

Z变换看系统频率响应,就是令Z在复频域的单位圆上跑一圈,即Z=e^(j2πf),即可得到频率响应。由于傅里叶变换的特性“时域离散,则频域周期”,因此离散信号的频谱必定是周期的,就是以这个单位圆为周期,Z在单位圆上不停的绕圈,就是周期重复。

扩展资料

某些情形下一个实变量函数在实数域中进行一些运算并不容易,但若将实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,

在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。引入拉普拉斯变换的一个主要优点,是可采用传递函数代替常系数微分方程来描述系统的特性。

这就为采用直观和简便的图解方法来确定控制系统的整个特性、分析控制系统的运动过程,以及提供控制系统调整的可能性。

应用拉普拉斯变换解常变量齐次微分方程,可以将微分方程化为代数方程,使问题得以解决。在工程学上,拉普拉斯变换的重大意义在于:将一个信号从时域上,转换为复频域(s域)上来表示;在线性系统,控制自动化上都有广泛的应用。

参考资料来源:百度百科-拉普拉斯变换

参考资料来源:百度百科-傅里叶变换

参考资料来源:百度百科-Z变换

s和z不仅仅是一个小写字母,更代表着s域和z域。可以简单理解为一个多维函数,从不同的角度去观察它,在s域和在z域看得到的结果显然是不同的。而仅仅把字母替换并没有改变观察的角度,所以把G(s)中的s直接改变为z本质上还是在s域。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12828961.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-28
下一篇 2023-05-28

发表评论

登录后才能评论

评论列表(0条)

保存