矩阵名词解释

矩阵名词解释,第1张


矩阵的解释

[matrix]

数学元素(如联立线性方程的系数)的一组矩形排列 之一 , 服从 特殊 的 代数 规律

词语分解

矩的解释 矩 ǔ 画 直角 或方形的工具:矩尺(曲尺)。矩形(长方形)。力矩(物理学上指使物体转动的力乘以到转轴的距离)。 规矩 。 法则, 规则 :循规蹈矩。 部首 :矢; 阵的解释 阵 (阵) è 军队作战时布置的局势:阵线。阵势。 严阵以待 。 战场:阵地。阵亡。冲锋陷阵。 量词, 指事 情或动作 经过 的段落:阵发。阵痛。下了一阵雨。 部首:阝。

意义:

数值分析的主要分支致力于开发矩阵计算的有效算法,这是一个几个世纪以来的课题,是一个不断扩大的研究领域。矩阵分解方法简化了理论和实际的计算。

针对特定矩阵结构(如稀疏矩阵和近角矩阵)定制的算法在有限元方法和其他计算中加快了计算。 无限矩阵发生在行星理论和原子理论中。 无限矩阵的一个简单例子是代表一个函数的泰勒级数的导数算子的矩阵。

矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。

扩展资料

在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。

在线性代数中,对于n阶方阵N,存在正整数k,使得N^k=0,这样的方阵N就叫做幂零矩阵。满足条件的最小的正整数k被称为N的度数或指数。

人类对数的认识有2个轨迹:第1个发展轨迹是对数本身的认识,在原始社会的狩猎中,用自然数1,2…,9来记录猎物,以后又认识了分数和小数。在研究圆的半径和周长的关系等一系列问题时,接触到了无理数,随后又发现了虚数。

第2个发展轨迹是,用字母代表数字进行各种数学运算,从具体的数字到代数,这是一个飞跃,有了代数,数学得到了飞速发展,如函数、微积分的出现。

参考资料来源:百度百科-矩阵

行列式的计算可知,当一个矩阵内的向量组都是线性无关,则说明该矩阵是满秩矩阵。若不是满秩矩阵,通过初等行变换则会出现某一行全为0,自然矩阵的行列式一定等于零。

向量的线性独立,一组向量中任意一个向量都不能由其它几个向量线性表示。特别地,所谓“线性关系”的本质就是“独立关系”(又叫线性独立),因为这时任何一辆车的“贡献”大小和有无(即其系数取正负、大小及是否取0等)皆与别的车无关。

扩展资料

初等行变换:

1、以P中一个非零的数乘矩阵的某一行。

2、把矩阵的某一行的c倍加到另一行,这里c是P中的任意一个数。

3、互换矩阵中两行的位置。

一般来说,一个矩阵经过初等行变换后就变成了另一个矩阵,当矩阵A经过初等行变换变成矩阵B时,一般写作

可以证明:任意一个矩阵经过一系列初等行变换总能变成阶梯型矩阵。

初等列变换

同样地,定义初等列变换,即:

1、以P中一个非零的数乘矩阵的某一列。

2、把矩阵的某一列的c倍加到另一列,这里c是P中的任意一个数。

3、互换矩阵中两列的位置。

矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。
行列式在数学中,是由解线性方程组产生的一种算式。行列式的特性可以被概括为一个多次交替线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。
行列式是若干数字组成的一个类似于矩阵的方阵,与矩阵不同的是,矩阵的表示是用中括号,而行列式则用线段
矩阵由数组成,或更一般的,由某元素组成
行列式的值是按下述方式可能求得的所有不同的积的代数和,即是一个实数
求每一个积时依次从每一行取一个元因子,而这每一个元因子又需取自不同的列,作为乘数,积的符号是正是负决定于要使各个乘数的列的指标顺序恢复到自然顺序所需的换位次数是偶数还是奇数
也可以这样解释:行列式是矩阵的所有不同行且不同列的元素之积的代数和,和式中每一项的符号由积的各元素的行指标与列指标的逆序数之和决定:若逆序数之和为偶数,则该项为正;若逆序数之和为奇数,则该项为负

从线性空间的角度看,在一个定义了内积的线性空间里,对一个N阶对称方阵进行特征分解,就是产生了该空间的N个标准正交基,然后把矩阵投影到这N个基上。N个特征向量就是N个标准正交基,而特征值的模则代表矩阵在每个基上的投影长度。
特征值越大,说明矩阵在对应的特征向量上的方差越大,功率越大,信息量越多。
应用到最优化中,意思就是对于R的二次型,自变量在这个方向上变化的时候,对函数值的影响最大,也就是该方向上的方向导数最大。
应用到数据挖掘中,意思就是最大特征值对应的特征向量方向上包含最多的信息量,如果某几个特征值很小,说明这几个方向信息量很小,可以用来降维,也就是删除小特征值对应方向的数据,只保留大特征值方向对应的数据,这样做以后数据量减小,但有用信息量变化不大。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12935192.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-29
下一篇 2023-05-29

发表评论

登录后才能评论

评论列表(0条)

保存