就目前来说,肯定不会的。很多都说,鲁班每秒出8000张海报。
我想问问,你用过鲁班吗?又有多少人在用鲁班做图?
反正我从双十一之前听说鲁班,一直到最近才找到鲁班。鲁班主要服务淘宝卖家的,我试着做了几张,速度很快,模板都是现成的,只需要改几行字就可以了。
不过,做出来的效果差强人意,那些banner最终还是自己来设计完成。
要知道,人工智能代替的是重复性的,不具备创意能力的工作。创意性的设计,我想人工智能,目前应该无法做到吧。
你好!我是康哥! 未来不光是人工智能会取代程序员写代码,我认为很多行业都有可能被取代!作为80后的我小时候没有电脑,父母那一辈基本上班的时候也都没接触过电脑,那个时候工作文稿都是用手写,而到我上了大学,短短18年的时间电脑在中国得到了普及。让我印象最深的是我参加工作的时候公司的老会计,业务能力不在话下,但是金蝶用友玩的不转。后来也不得不顺应时代的发展,学习电脑知识。
所以人工智能现在看似是一个很新兴的产业,但是很可能在未来的十几年当中渗入我们生活中的方方面面。
那些重复性的工作,例如人力资源中的考勤工资;财务中的基础做账工作;程序员中的基础代码工作;甚至医院的医生都会被人工智能取代 。
未来不会被渠道的是一些重复性工作不强的职位,我认为这个实际上就是效率的提升,电脑代替手工劳动,机器代替人的大脑和手脚,让我们的生活更加有效率。
我认为是一件好事情,能让我们有更多的时间去开发新事物。不断地开发我们的大脑去 探索 新事物。
但是从另外一个方面来看,未来的确有很多人会失业。不管是现在我们常见的一些岗位,包括一些看似稳定的铁饭碗,例如公务员或者事业单位人员,一些职能性的但是效率底下的职位也将会被取代。
这就提醒我们每个人都要居安思危,不断提升自己的技能和附加值,这样才不会被 社会 所淘汰,二十年时间看似很长,但是实际很短。
AI能代替我们的是一些能够重复的工作和简单的开发工作,可是谁来维护这些人工智能,如何管理这些人工智能我认为未来是我们人类职位的一个新增项。
作为一名IT行业的从业者,同时也是一名计算机专业的教育工作者,我来回答一下这个问题。
首先,随着人工智能技术的不断发展,未来大量基础的编码工作必然会由智能体来完成,这个过程也会不断推动程序员的岗位升级,提升程序员的岗位附加值,同时减轻程序员的工作压力。实际上,人工智能技术的发展对于未来延长程序员的职业生命周期具有重要的意义。
当前程序员岗位的工作压力还是比较大的,不仅应用级程序员每天需要完成大量的编码工作,研发级程序员也需要面对一些毫无能力提升的编码工作,这在很大程度上降低了程序开发的乐趣,使得程序员感到乏味。随着当前产品迭代的速度不断加快(大数据时代的并行迭代),程序员不仅面临更大的工作量,在工作内容上也得到了一定的拓展(全栈开发趋势),所以当前从事程序员岗位还是具有一定难度的。
要想让程序员从当前的工作压力当中解放出来,采用智能体实现代码编写是非常重要的一个解决方案,这不仅会提升程序开发的效率,同时也会保障程序代码的质量一致性,提升程序的稳定性。实际上,当前在程序开发领域内已经有不少工具可以完成一部分代码的生成工作,虽然目前功能还不够强大,但是已经在一定程度上减轻了程序员的编码负担。
未来当智能体替代程序员完成基本的编码工作之后,程序员可以把更多的精力应用在创新方面(算法设计、模式设计、框架设计等),而且技术验证的速度也会明显提升,这些都会提升程序员的工作效率。
如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言,或者私信我!
有人说,人工智能将来可替代程序猿写代码,你怎么看?
好!
科技 这么发达,
完全有可能,
但是,
怎么发达,
有一些程序还是离不开人的 *** 作,
程序猿,
有些程序必须靠人工才能完,
这个毋庸置疑,
不论智能怎么发达,
有些人的 *** 作,
永远取代不了的,
这个倒是真的,
有一些事物,
是人工智能无法完成的,
到任何时候人,
都不会被智能取代消退,
总有一些程序交给人,
来 *** 作!
都是些不深入ai的媒体炒作概念,让人觉得ai无所不能。一百二十八年内不可能,有的话也是小打小闹,满足不了工业届千变万化的需求。ai可以辅助创作,但独立创作,尤其是代码,绝无可能。
如果ai将来能写可执行的逻辑正确的代码,那么未来的程序员或算法工程师,都会大部分失业。如果ai都能按逻辑写代码,都可以去尝试各种逻辑,甚至自己决策。那么ai可以控制各种带有芯片的设备,小到手机,大到 汽车 。这还是ai么,这不是上帝之子么。
可能你从github喂海量的代码给到模型,借助于大数据和gpu算力出来,理论上来说能训练出一个号称能写代码的ai但这个ai写出的代码都是基于统计规律的,不能处理突发事故。运气好的话,生成的代码能执行,但代码越长,生成的代码可运行的概率越低。
即使能运行,代码的逻辑是什么?
程序员和产品经理干架,就是因为需求会一直变。你期望ai能写出满足千变万化的需求的代码?
我们从几十亿年的单细胞生物进化到今天,能不能有点自信?要是ai这么厉害,我觉得我没脸说我是人了。总之,怎么可能!
将来我们写代码时:
总之,ai可以辅助程序员编程,极大提高编程效率。但如果代替程序员自己编程,根本不可能。如果有那一天,我把我现在的手机吃了。
这几年,人工智能被炒的越来越热了,比如阿里的鲁班系统能够自动生成双十一海报,一天可能出图上亿张;还有通过机器学习,程序画的话,被卖到上亿元;其实就目前来讲,这些都是比较基础的,人工智能即使画画,也是通过机器学习别人的画之后,说白了, 组合的。没有灵魂作为支撑的产品,不能说没有价值,但是在意义层面来讲绝对是非常弱的。
人工智能在将来可以替代程序员写代码吗?我只能说:有可能,而且即使人工智能代替程序员写代码,也是比较基础的,其实,随着现在程序工具化的趋势,已经解放了程序员,如果人工智能+工具化,在一些基础的,机械的编程中,确实能够让程序员解放出来,去处理更加复杂的业务逻辑和架构设计。
但是,我感觉人工智能完全取代程序员是不可能的。因为,机器永远也不想到人类复杂的需求,尤其是,变来变去的需求变化。如果机器能够有灵魂的话,估计也会被人类复杂且变来变去的需求,折磨的要死,从而发出一句,感叹:卧槽,这是什么玩意的破需求。
但是,去年有一条新闻值得我们关注,那就是:
Repairnator 是由 KTH 瑞典皇家理工学院的软件技术教授 Martin Monperrus 开发。它会监控开源软件在持续集成期间发现的 bug,并尝试自动修复它们。如果它成功合成了一个有效的补丁,那么 Repairnator 会伪装成人类身份向人类开发者提交此补丁。到目前为止,Repairnator 已经成功生成了 5 个补丁,并被人类开发者永久地合并到代码库中。
这是自动程序修复软件工程研究中新的里程碑。
所以,现在机器都可以修改 bug 了,将来在一定程度上写程序,也是有可能的,但是完全取代我认为不现实。
原因如下:
当然了,如果机器能够完全取代人类编程的话,那非常可怕啊,未来有可能将是被机器控制的时代,而不是人类控制机器的时代。
有人说,人工智能将来可以取代程序员来写代码,这个理由不成立,因为人工智能就是程序员开发出来的。而且现在所谓的人工智能远远没有达到真正意义上的智能,大部分还是人工更多一点。
如果以人类的生命成长阶段来看,人工智能目前只能算是婴儿阶段,在婴儿阶段就抛弃喂养自己的母亲程序员,那为时也太早了。
人工智能大体分两个大的方向,图像识别和机器学习。目前图像识别成长的比机器学习更快一点,但也仅限于快一点儿,我们常见的图像识别场景就是无人驾驶。而机器学习发展相对缓慢,都是在初级阶段,如果想要有阶段性的变化,在算法机制上要有突破性的进步,才能引领机器学习进入下一阶段。
所以至少在未来几十年甚至上百年我认为我们程序员都不会失业的,还是有饭吃的。
所谓人工智能的程序也是由人类开发设定的,它也绝不会取代人的作用,它对美学,结构想象力设计,逻辑多向思维甚至悬思学都无法深入涉足,它就像一个架构师将算法和公式公布出来,其它基础部分由代码来完成一样,就算将来人工智能也可以进行相关研发,但审核与检测仍然需要人类完成,人类的工作只会越来越高级。
所以不用杞人忧天,人工智能是不可能真正成为人类的思维一部分的,当它的工作目标对人类无意义而虚耗电能和时间的时候,人类是一定会及早发现并介入的,一个简单的拔电源就可以停止其行为……
人工智能是近阶段大家经常提到的一个话题,其中神经网络深度学习其中一个特点,那么人工智能最终真的能达到一般人类这样去思维么?能够像程序员那样的编程么?会不会以后有一天真的能替代程序员了吧,这件事情你是怎么看待的?针对这事情我来说一下我的看法。
人工智能会让程序员的工作效率更高,十年之内不可能完全代替程序员
在CSDN上有一篇报道,有一个名字为Screenshot-to-code-in-Keras的项目可以把一些稿件自动变成一堆html代码加css代码,有的前端程序员就可能为此而感觉到恐慌,感觉以后人工智能要替代自己的饭碗了,这样的事情也不足为奇,在人工智能这个概念还没有兴起之前,一些java程序员使用ide开发工具就能生成一堆代码,节省了开发效率。感觉起码在近五到十年内感觉人工智能还不能完全替代人类程序员这样去编程,就以前端代码为例,虽然html代码加效果类css让人工智能生成代码,可能人工智能在这方面战术上完胜,但是一些战略问题它还是远远不及人类的。
其一它生成的东西能确保是人类想要的吗?,如果不符合要求是不是需要人类程序员来调整,人工智能不可能做出一套适应所有场景的东西出来。
其二前端程序员是要与后端程序员进行对接的,在对接时各个参数,怎么调用了,相当复杂,两个人类程序员(前端程序员与后端程序员)还需要沟通好长时间,难道人工智能就能那么完美理解人类的意思就不需要沟通了么?
近5到10年内的情况可能是这样的,一些低级的常规的代码都可能会是自动生成,一些组织调整的工作交给人类程序员来进行处理,最后项目的质量当然还是有人类进行负责的,由人工智能的加持,程序员的工作效率可能会大大提高,以往传统开发需要几周的工作量可能会缩减到几天甚至更短。
未来上层领域的程序员数量会减少
随着时间再往后发展,我想一些上层代码会逐渐由人工智能程序自己完成了,可能写代码的不再是程序员了,比如说可能是一种 *** 作软件的形式存在,有着成熟的 *** 作界面,良好的 *** 作体验,一个非技术人员通过界面输入自己想要的东西,通过一定的规则描述,然后就会生成相应的代码并能直接运行。或者比这个更先进,不是一个软件界面的形式存在,而是一个智能硬件设备,只需要对其说话,像与人类说话那样,说出自己的需求,智能设备就能在短时间内做出自己想要的东西。
如果真能达到这种程度的话,我想未来参与业务开发的程序员的数量将会急剧减少,但是 不可能减少到为0,因为人工智能做出的东西也不可能是完全有保证的,起码需要个别人还需要进行对项目代码进行负责不是嘛,就想现在的无人驾驶车为啥还留有方向盘一样。上层开发的人员少了,人工智能这些底层开发的程序员会更吃香了,甚至数量会多起来。
软件数量和规模将成倍增长
大家都知道程序做事效率是相对高的,人类做项目是用天,周,年为单位来计算的,那么这些软件交给人工智能处理应该是秒级别的吧,如果是大一点的项目顶多是分钟了。如果是这样的话,估计人类世界软件的发展速度将会达到一个新的高度,软件的数量和规模将是几何倍数的增长。
如果真是这样一天的到来,我想人类在学习和思想上都要有策略上的改变,以前经常在嘴边说的话,要勤奋,要多动手,未来的人类要做的事情,就是要多思考,勤于思考。动手的事情就交给人工智能去吧。
那是必然的。不仅程序,看病,甚至很多方面都可以,但是,那种机械的,生冷的东西在几何级数提高效率的同时也会铸成,无论如何,这个趋势不可阻挡,是喜是忧?需要盖棺定论。
电脑只能处理精确到指令,需求一开始往往是很模糊的,以目前人工智能自然语言语义理解的发展程度,可能性很低。[设计思维][人工智能]
在2015 年之前的淘宝“双11”,商品推荐都是人来控制的,由运营决定给用户推荐什么产品,而 2015 年的“双11”,是阿里第一次基于算法和大数据,为用户做大规模的、个性化的商品推荐,叫做“千人千面”,是阿里流量分发模式很大的升级和转型。“双11”结束后,设计、工程和算法团队聚在一起,商量下一年要做些什么。我们当时想,我们已经做到的个性化推荐,但都是基于白底图商品推荐,能不能往前迈一步,让 强营销导向的广告资源位的设计也“千人千面” 呢? 从纯商品个性化跨到广告资源位个性化 ,中间几个关键的技术点打通之后,我们就着手做了。
第一点:图像算法“抠图”。 因为高质量的广告设计需要把商品抠出来,放到精美的设计主题里。以前都是设计师给商品抠图后再做设计,现在我们用机器做海量设计,就得让机器来做这个事情。我们跟阿里搜索部门做图像切割的算法团队合作,处理海量的商品自动抠图。
第二点:把设计变成“数据” 。一张广告设计是像素组成的“信息”,不是“数据”。我们利用机器把商品、文字和设计主题进行在线合成,这样每张广告就带上了商品信息,可以根据消费者偏好进行个性化投放。所以鲁班产品上线初期,我们请设计师根据活动主题做了大批量风格确定的模板,证明了这种模式投放效果可以大幅提升点击率。
第三点:让机器学习设计。 靠“人肉设计模板”度过了第一个阶段,但长远发展角度我们必须让机器来做设计。大概是 16 年 8 月份开始的,有一位之前负责淘宝“拍立淘”(在淘宝内通过搜索找同款,随拍随找)产品开发的图像算法专家加入进来,主导整个智能设计的算法框架。
因为我们在做一件很新的事情,行业里没有什么参考对象,只能不断试错。 刚开始的时候,我们的数据不太够,就制定了很强的设计规则去控制,结果就是机器要么跑不出设计结果,要么设计出来的结果很失控。 设计是有无穷可能性的,靠弱数据强规则必然走不通 。意识到这一点以后,我们就集中精力去解决数据问题,把内部设计师电脑里的设计图和供应商的设计图都收集过来。我们有自己开发的设计协同工具 “设计板” ,有点类似Slack(一款协作办公应用),但是是专门用于设计协同的。这样才能方便我们大批量、规模化的找到这些数据。因为收集过来的数据是很杂乱的。比如“双11”期间“魔性”的设计风格跟无印良品这种“性冷淡”风格差异很大,这是完全不一样的品牌调性和设计需求。我们花了很大的力气去整理和建立了一套数据体系去管理设计数据,让机器生产出更匹配的结果。
第一步:让机器理解设计是什么构成的。 我们通过人工数据标注,对设计的原始文件中的图层做分类,对元素做标注。设计专家团队也会提炼设计手法和风格。通过数据的方式告诉机器这些元素为什么可以放在一起,我们把专家的经验和知识通过数据输入。 这部分核心是深度序列学习的算法模型 。
第二步:建立元素中心。 当机器学习到设计框架后,需要大量的生产资料。我们会建立元素库,通过机器做图像特征提取,然后分类,再通过人工控制图像质量以及版权问题,我们买了有版权的图库,也是希望从一开始就避免版权方面的纠纷。
第三步:生成的系统。 原理有点像 Alpha Go 下围棋。我们在设计框架上构建起虚拟画布,类似棋盘,生成的系统把元素中心的元素往棋盘放, 在这里我们采用了“强化学习” ,就好像你在家里放一台扫地机器人,让它自己跑,跑个几圈,它自己会知道哪里有障碍要避开。在强化学习的过程中,机器参考原始样本,通过不断尝试,得到一些反馈,然后从中学习到什么样的设计是对的、好的。
第四步:评估的系统。 我们会抓取大量设计的成品, 从“美学”和“商业”两个方面进行评估 。美学上的评估由人来进行,这方面有专业众包公司;商业上的评估就是看投放出去的点击率浏览量等等。
“双11”的风格是比较确定而且需要严格执行,所以设计师制作了很多“双11”特定风格的固定模板。机器在这个基础上,把调整尺寸这些行为进行优化,节省了尺寸拓版的人力。用机器生成亿级设计从而带来商业效果提升,总体来说也是一次非常成功的应用实践。我想未来的“双11”仍然会是设计师带着机器做设计的模式,重大活动中设计机器是提升效率的助理角色。
引用阿里 CEO 的话——“鲁班是数据业务化的代表”,之前我们有很多数据,但都是闲置的或者利用效率不高的,比如海量的商品图,而“鲁班”把数据变成了业务,通过大规模设计加精准投放,提高每个广告位的资源效率,带动了流量的效率和业务价值,点击率是翻倍的,收益也接近翻倍。人员倒没有出现缩减,只是做的事情有调整了,要学习这套系统,学习如何训练机器,同时在美学方面做把控。
一是要让智能设计去影响阿里设计生态,让“鲁班”能服务百万量级的商家和设计师。一开始在内部推进“鲁班”的时候,我们也面临过阻力。传统的方式就是,设计一个 banner,放很多商品,显得很热闹,而“鲁班”做出来的 banner 上就是单件商品,但与消费者是相关的,因为是基于算法精准推荐的,是你会感兴趣的,只是这样就要把商品放大、显眼,可能在设计上就不够美。但最后,我们让数据说话,确实后者给业务带来了很好的增长。这个教育过程是比较长的,在内部我们可以做,但面对百万商家和设计师如何去做?这是我们的挑战。
二是数据算法本身的持续升级。AI 行业每年都会有很大的变化,新的技术不断涌现出来,如何跟上最新的技术?这也是我们始终不能松懈的点。
本人从业只有一年有余,不敢对前辈不敬,但是我想斗胆回答一下题主的问题- 为什么阿里的产品体验不行?
个人认为思考这个问题的另一个角度: 阿里系的软件(这里软件默认C端,B端另说)不是不重体验,而是取决于产品是何导向。最高赞的兄弟提到了腾讯,为什么腾讯体验做的好,因为鹅厂的基因就是产品导向。高层的重视能决定很多东西(在一个程序员是PO的团队,你就知道设计师多难做了)。那么腾讯那两个产品做到最后都GG的原因是什么呢?我觉得这个问题超出了产品的可用性和易用性的范围。个人觉得是市场决定的。腾讯不是没有成功的产品,你打开你手机用电量排行榜看一下第一,是不是两个对话气泡,背景绿了吧唧的家伙?对,微信。微信在11年左右抢先占领了语音消息的市场,微信团队体验也是锦上添花的东西,所以它就该成功。
反观腾讯微博,微视的例子,他们被新浪微博和秒拍压在身下呼吸都困难,只能在一阵抽搐之后变得索然无味了。狭路相逢勇者胜,但是你如果是一个刚出生的孩子,对方是一天吃十顿饭的相扑,你们相逢一下试试。回到阿里系C端软件体验的话题,说了这么多,其实我只想论证一点,它为什么体验不好?因为阿里是一个业务导向的公司。当运营能够决定设计的时候,体验什么都不重要了。
运营,市场爹说我能给公司挣钱,你特么撸两个banner能给公司带来什么?况且现在阿里鲁班系统出来之后设计师(尤其对运营视觉,这里respect)已经被逼到墙角色色发抖了。当然。这个导向也不是绝对,看对于什么类型的产品而言。希望我的观点能与大家讨论,共同进步。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)