已知矩阵的特征值,求解行列式

已知矩阵的特征值,求解行列式,第1张

特征值行列式的关系知:|A|=λ1λ2λ3=(-1)2-4

其中公式中λi是矩阵A的特征值。

(2)设f(x)=x^2+3x-1

则B=f(A)

由特征值的性质知:若λ是矩阵A的特征值,则f(λ)就是多项式矩阵f(A)的特征值,

所以B=f(A)的特征值是:f(-1), f(2), f(2)

即B的特征值是:f(-1)=(-1)^2+3(-1)-1=-3

f(2)=2^2+32-1=9

f(2)=9

即B的特征值是:-3,9,9

设A为n阶矩阵,若存在常数λ及n维非零向量x,使得Ax=λx,则称λ是矩阵A的特征值,x是A属于特征值λ的特征向量。

扩展资料:

无限维矩阵的研究始于1884年。庞加莱在两篇不严谨地使用了无限维矩阵和行列式理论的文章后开始了对这一方面的专门研究。1906年,希尔伯特引入无限二次型(相当于无限维矩阵)对积分方程进行研究,极大地促进了无限维矩阵的研究。

在此基础上,施密茨、赫林格和特普利茨发展出算子理论,而无限维矩阵成为了研究函数空间算子的有力工具。矩阵的概念最早在1922年见于中文。1922年,程廷熙在一篇介绍文章中将矩阵译为“纵横阵”。

1925年,科学名词审查会算学名词审查组在《科学》第十卷第四期刊登的审定名词表中,矩阵被翻译为“矩阵式”,方块矩阵翻译为“方阵式”,而各类矩阵如“正交矩阵”、“伴随矩阵”中的“矩阵”则被翻译为“方阵”。

1935年,中国数学会审查后,中华民国教育部审定的《数学名词》(并“通令全国各院校一律遵用,以昭划一”)中,“矩阵”作为译名首次出现。1938年,曹惠群在接受科学名词审查会委托就数学名词加以校订的《算学名词汇编》中,认为应当的译名是“长方阵”。

中华人民共和国成立后编订的《数学名词》中,则将译名定为“(矩)阵”。1993年,中国自然科学名词审定委员会公布的《数学名词》中,“矩阵”被定为正式译名,并沿用至今。

参考资料来源:百度百科-矩阵

|A-λI|
=
-λ 1 1 0
0 -λ 1 1
0 0 -λ 1
1 0 0 -λ
按第1列展开
=λ⁴-
1 1 0
-λ 1 1
0 -λ 1
第2列减去第1列,然后第2行减去第3行,得到
=λ⁴-
1 0 0
-λ 2λ+1 0
0 -λ 1
=λ⁴-(2λ+1)
令其等于0,解得特征值。

求矩阵特征值的方法如下:

任意一个矩阵A可以分解成如下两个矩阵表达的形式:                                                               

其中矩阵Q为正交矩阵,矩阵R为上三角矩阵,至于QR分解到底是怎么回事,矩阵Q和矩阵R是怎么得到的,你们还是看矩阵论吧,如果我把这些都介绍了,感觉这篇文章要写崩,或者你可以先认可我是正确的,然后往下看。

首先我们有A1=A=QR,则令A2=RQ,则有:                                                                          

由式(22)可知,A1和A2相似,相似矩阵具有相同的特征值,说明A1和A2的特征值相同,我们就可以通过求取A2的特征值来间接求取A1的特征值。

扩展资料:


矩阵特征值性质

若λ是可逆阵A的一个特征根,x为对应的特征向量,则1/λ 是A的逆的一个特征根,x仍为对应的特征向量。

若 λ是方阵A的一个特征根,x为对应的特征向量,则λ 的m次方是A的m次方的一个特征根,x仍为对应的特征向量。

设λ1,λ2,…,λm是方阵A的互不相同的特征值。xj是属于λi的特征向量( i=1,2,…,m),则x1,x2,…,xm线性无关,即不相同特征值的特征向量线性无关 。

参考资料来源:百度百科-矩阵特征值

分析
特征方程 |λI-A| = 0的求解,是进行带参数行列式 |λI-A| 的化简。
解答
此行列式为3阶行列式,又有0,可以考虑直接展开。
|λI-A| = (λ-1)(λ-2)(λ-3)-4(λ-1)-4(λ-3) = (λ-1)(λ-2)(λ-3)-8(λ-2)= (λ+1)(λ-2)(λ-5) =0
λ1=-1,λ2=2,λ3=5
评注
参数行列式 |λI-A| 的化简,是行列式计算的基本内容,需要牢牢掌握。
其化简方法很多,2阶行列式可直接展开计算,3阶有若干元素为0也可展开,其他行列式可利用性质化简后计算。
newmanhero 2015年2月27日13:30:40
希望对你有所帮助,望采纳。

考试一般考察的就是给出三阶矩阵,求其特征值λ。按照教材中的知识脉络求解的方法一般有

直接依据对角线法则,三阶行列式展开共有9项λ多项式的和,问题就转化为一元三次多项式求根的问题。化简之后求根的步骤一般可以借助提公因式求根;公因式不容易看出来的话,这个时候就可以试根(比如det(λE-A)=0的所有可能的有理根是常数项的因子,你可以尝试代入一个计算该多项式是否为0,这个过程算得很快的,找到一个根的话问题然后就转化为就是一元二次方程求根了,这个就so easy了)

依据行列式性质,三条性质只用到

某行或某列提出常数公因子

某行或某列的k倍加到另一行或另一列。

如果能换成上下三角行列式那就很好算了--行列式的值直接就是对角元相乘。我们的目的是得到好多的零!

3 按照某行或者某列展开。可以直接不用化简,直接算三个二阶行列式。

重点是第一条中得到多项式然后求根的问题,第一条对角线法则是通用的,就是写出来的项数最多,化简要细心。推荐搭配行列式的性质多多划出好多零,那就容易多啦。

特别提醒:试根的时候,det(λE-A)=0的所有可能的有理根是常数项的因子。注意是有理根哦。对于本科来说A都是定义在R上的,所以这个试根的方法就很有用。

以上

(我发现没有小伙伴来说过这个定理哈哈哈,看来没有学过高等代数的大佬来回答啊。)


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/13116571.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-30
下一篇 2023-05-30

发表评论

登录后才能评论

评论列表(0条)

保存