在已知标准差的情况下,方差=标准差标准差=标准差的平方。
(1)计算平均值:
(2 + 3 + 4 + 5+ 6 + 8)/6 = 30 /6 = 5
(2)计算方差:
(2 – 5)^2 = (-3)^2= 9
(3 – 5)^2 = (-2)^2= 4
(4 – 5)^2 = (-1)^2= 0
(5 – 5)^2 = 0^2= 0
(6 – 5)^2 = 1^2= 1
(8 – 5)^2 = 3^2= 9
(3)计算平均方差:
(9 + 4 + 0 + 0+ 1 + 9)/6 = 24/6 = 4
(4)计算标准差:
√4 = 2
统计学意义
当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。
样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。
方差与期望的关系公式:DX=E(X^2-2XEX+(EX)^2)。在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。概率,亦称“或然率”,它是反映随机事件出现的可能性(likelihood)大小。随机事件是指在相同条件下,可能出现也可能不出现的事件。例如,从一批有正品和次品的商品中,随意抽取一件,“抽得的是正品”就是一个随机事件。设对某一随机现象进行了n次试验与观察,其中A事件出现了m次,即其出现的频率为m/n。比如有1113151719五个数,那么方差就是五个数先取平均数15,然后用平均数分别减去这五个数,将每个减出来的结果平方,然后再相加,最后除以五(有几个数据就除以几)。标准差就是方差开平方
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)