常数项指的是多项式中,每个单项式上不含字母的项。例如在多项式6X-2X+7中,6X、-2X和7是它的项,其中7是常数项。
常数是指固定不变的数值。就是除了字母以外的任何数,包括正负整数和正负小数、分数、0和无理数(如π)。如圆的周长和直径的比π_铁的膨胀系数0000012等。
常数具有一定含义的名称,用于代替数字或字符串,其值从不改变。数学上常用大写的"C"来表示某一个常数。一个数学常数,是指一个数值不变的常量,与之相反的是变量。跟大多数物理常数不一样的地方是,数学常数的定义是独立于所有物理测量的。
扩展资料多项式是一类简单的初等函数,而且任给两组数:b1,b2,,bn+1和各不相同的 с1,с2,,сn+1,总有唯一的次数不超过n的多项式ƒ(x)满足ƒ(сi)=bi,i=1,2,,n+1。因此在实际应用中常常取多项式作为插值函数。作为插值函数的多项式,称为插值多项式。插值多项式在计算数学插值中最常用。
在实际问题中,往往通过实验或观测得出表示某种规律的数量关系y=F(x),通常只给出了F(x)在某些点xi上的函数值yi=F(xi),j=1,2,,n+1。即使有时给出了函数F(x)的解析表达式,倘若较为复杂,也不便于计算。因此,需要根据给定点 xi 上的函数值F(xi),求出一个既能反映F(x)的特性,又便于计算的简单函数ƒ(x)来近似地代替F(x),此时ƒ(x)称为F(x)的插值函数;x1,x2,,xn+1,称为插值节点。求插值函数的方法,称为插值法。
参考资料来源:百度百科-常数项
参考资料来源:百度百科-多项式
比如说aX的平方+bX+c。a是二项式系数,c是常数项(具体数字),而a,b,c都是系数。
对于任意一个n次多项式,我们总可以只借助最高次项和(n-1)次项,根据二项式定理,凑出完全n次方项,其结果除了完全n次方项,后面既可以有常数项,也可以有一次项、二次项、三次项等,直到(n-2)次项。
特别地,对于三次多项式,配立方,其结果除了完全立方项,后面既可以有常数项,也可以有一次项。
扩展资料:
由于二次以上的多项式,在配n次方之后,并不能总保证在完全n次方项之后仅有常数项。于是,对于二次以上的一元整式方程,无法简单地像一元二次方程那样,只需配出关于x的完全平方式,然后将后面仅剩的常数项移到等号另一侧,再开平方,就可以推出通用的求根公式。
对于求解二次以上的一元整式方程,往往需要大量的巧妙的变换,无论是求解过程,还是求根公式,其复杂程度都要比一次、二次方程高出很多。
参考资料来源:百度百科--二项式定理
多项式中,每个单项式上不含字母的项叫常数项。常数,就是除了字母以外的任何数,包括正负整数和正负小数、分数、0,一个数学常数,是指一个数值不变的常量,与之相反的是变量,跟大多数物理常数不一样的地方是,数学常数的定义是独立于所有物理测量的。
单项式的次数是各字母的指数和,常数项没有字母,所以次数为0。关于常数项的次数,也可以这样理解:给常数配上一个不等于0的且指数为0的字母因数(非零的零次幂等于1),显而易见,常数项的次数为0。常数项当然要计算。
例如x²+x-1这个多项式,就是二次三项式,次数是2,是因为未知数x的最高次数是2
项数是3,是因为一共有3项:x²;x;-1这三项。这里,常数项-1也要计算。二项式常数项公式是:以二项式(a+bx)^n,(a,b是非零常数)为例:(a+bx)^n=C(n,0)·(a^n)·(bx)^0+C(n,1)·a^(n-1)·(bx)^1+…+C(n,r)·a^(n-r)·(bx)^r+…+C(n,n)·a^0·(bx)^n。
第一,常数项是指变量x的指数为0的项,每个展开式若有常数项,则只有一个常数项。
第二,系数分二项式系数和一般系数(一定要分清): 二项式系数是指组合数C(n,0),C(n,1),…,C(n,r),…,C(n,n),它们都是正整数,其和=2^n。一般系数是指变量x的数字系数和字母系数,即所有的C(n,r)·a^(n-r)·b^r,(r=0,1,…,n)。在此例中,常数项就是r=0时的项:C(n,0)·a^n,x的二次方的系数是r=2时的项的系数:C(n,2)·a(n-2)·b^2,其中C (n,2)是此项的二项式系数。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)