VarX = E[X^2] - (EX)^2
E[X^2] = 18
E[(X-4)^2]=E[(X-EX)^2]=VarX=2
Var(2X-4)=2^2 VarX=8
扩展资料:
经济决策
假设某一超市出售的某种商品,每周的需求量X在10至30范围内等可能取值,该商品的进货量也在10至30范围内等可能取值(每周只进一次货)超市每销售一单位商品可获利500元,若供大于求,则削价处理,每处理一单位商品亏损100元;
若供不应求,可从其他超市调拨,此时超市商品可获利300元。试计算进货量多少时,超市可获得最佳利润?并求出最大利润的期望值。
分析:由于该商品的需求量(销售量)X是一个随机变量,它在区间[10,30]上均匀分布,而销售该商品的利润值Y也是随机变量,它是X的函数,称为随机变量的函数。题中所涉及的最佳利润只能是利润的数学期望(即平均利润的最大值)。
因此,本问题的解算过程是先确定Y与X的函数关系,再求出Y的期望E(Y)。最后利用极值法求出E(Y)的极大值点及最大值。
抽奖问题
假设某百货超市现有一批快到期的日用产品急需处理,超市老板设计了免费抽奖活动来处理掉了这些商品。纸箱中装有大小相同的20个球,10个10分,10个5分,从中摸出10个球,摸出的10个球的分数之和即为中奖分数,获奖如下:
一等奖 100分,冰柜一个,价值2500元;
二等奖 50分, 电视机一个,价值1000元;
三等奖 95分, 洗发液8瓶,价值178元;
四等奖 55分, 洗发液4瓶,价值88元;
五等奖 60分, 洗发液2瓶,价值44元;
六等奖 65分, 牙膏一盒, 价值8元;
七等奖 70分, 洗衣粉一袋,价值5元;
八等奖 85分, 香皂一块, 价值3元;
九等奖 90分, 牙刷一把, 价值2元;
十等奖 75分与80分为优惠奖,只収成本价22元,将获得洗发液一瓶;
参考资料来源:百度百科-数学期望
方差是var(x)=E[X²]-(E[X])²。
均匀分布的方差:var(x)=E-(E)²,我们看看二阶原点矩E:因此,var(x)=E-(E)²=1/3(a²+ab+ b²)-1/4(a+b)²=1/12(a²-2ab+ b²)=1/12(a-b)²。
均匀分布在概率论和统计学中,均匀分布也叫矩形分布,它是对称概率分布,在相同长度间隔的分布概率是等可能的。均匀分布由两个参数a和b定义,它们是数轴上的最小值和最大值,通常缩写为U(a,b)。
重要分布的期望和方差
1、0-1分布:E(X)=p ,D(X)=p(1-p)。
2、二项分布B(n,p):P(X=k)=C(k\n)p^k·(1-p)^(n-k),E(X)=np,D(X)=np(1-p)。
3、泊松分布X~P(X=k)=(λ^k/k!)·e^-λ,E(X)=λ,D(X)=λ。
4、均匀分布U(a,b):f(x)=1/(b-a),a。
根据题目,x的概率密度f(x)=1 ,0<x<10, 其他
且E(X)=05
E(lnx)=∫(-∞->+∞)(lnx)f(x)dx=∫(0->1)(lnx)dx
=xlnx-1 |(0->1)
=0
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)