a) 首先,你要有一台PC(这不废话么^_^),装好了Linux。
b) 安装好GCC(这个指的是host gcc,用于编译生成运行于pc机程序的)、make、ncurses等工具。
c) 下载一份纯净的Linux内核源码包,并解压好。
注意,如果你是为当前PC机编译内核,最好使用相应的Linux发行版的源码包。
不过这应该也不是必须的,因为我在我的Fedora 13上(其自带的内核版本是2.6.33.3),就下载了一个标准的内核linux-2.6.32.65.tar.xz,并且顺利的编译安装成功了,上电重启都OK的。不过,我使用的.config配置文件,是Fedora 13自带内核的配置文件,即/lib/modules/`uname -r`/build/.config
d) 如果你是移植Linux到嵌入式系统,则还要再下载安装交叉编译工具链。
例如,你的目标单板CPU可能是arm或mips等cpu,则安装相应的交叉编译工具链。安装后,需要将工具链路径添加到PATH环境变量中。例如,你安装的是arm工具链,那么你在shell中执行类似如下的命令,假如有类似的输出,就说明安装好了。
[root@localhost linux-2.6.33.i686]# arm-linux-gcc --version
arm-linux-gcc (Buildroot 2010.11) 4.3.5
Copyright (C) 2008 Free Software Foundation, Inc.
This is free softwaresee the source for copying conditions. There is NO
warrantynot even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
注:arm的工具链,可以从这里下载:回复“ARM”即可查看。
二、设置编译目标
在配置或编译内核之前,首先要确定目标CPU架构,以及编译时采用什么工具链。这是最最基础的信息,首先要确定的。
如果你是为当前使用的PC机编译内核,则无须设置。
否则的话,就要明确设置。
这里以arm为例,来说明。
有两种设置方法():
a) 修改Makefile
打开内核源码根目录下的Makefile,修改如下两个Makefile变量并保存。
ARCH := arm
CROSS_COMPILE := arm-linux-
注意,这里cross_compile的设置,是假定所用的交叉工具链的gcc程序名称为arm-linux-gcc。如果实际使用的gcc名称是some-thing-else-gcc,则这里照葫芦画瓢填some-thing-else-即可。总之,要省去名称中最后的gcc那3个字母。
b) 每次执行make命令时,都通过命令行参数传入这些信息。
这其实是通过make工具的命令行参数指定变量的值。
例如
配置内核时时,使用
make ARCH=arm CROSS_COMPILE=arm-linux- menuconfig
编译内核时使用
make ARCH=arm CROSS_COMPILE=arm-linux-
注意,实际上,对于编译PC机内核的情况,虽然用户没有明确设置,但并不是这两项没有配置。因为如果用户没有设置这两项,内核源码顶层Makefile(位于源码根目录下)会通过如下方式生成这两个变量的值。
SUBARCH := $(shell uname -m | sed -e s/i.86/i386/ -e s/sun4u/sparc64/ \
-e s/arm.*/arm/ -e s/sa110/arm/ \
-e s/s390x/s390/ -e s/parisc64/parisc/ \
-e s/ppc.*/powerpc/ -e s/mips.*/mips/ \
-e s/sh[234].*/sh/ )
ARCH?= $(SUBARCH)
CROSS_COMPILE ?=
经过上面的代码,ARCH变成了PC编译机的arch,即SUBARCH。因此,如果PC机上uname -m输出的是ix86,则ARCH的值就成了i386。
而CROSS_COMPILE的值,如果没配置,则为空字符串。这样一来所使用的工具链程序的名称,就不再有类似arm-linux-这样的前缀,就相当于使用了PC机上的gcc。
最后再多说两句,ARCH的值还需要再进一步做泛化。因为内核源码的arch目录下,不存在i386这个目录,也没有sparc64这样的目录。
因此顶层makefile中又构造了一个SRCARCH变量,通过如下代码,生成他的值。这样一来,SRCARCH变量,才最终匹配到内核源码arch目录中的某一个架构名。
SRCARCH := $(ARCH)
ifeq ($(ARCH),i386)
SRCARCH := x86
endif
ifeq ($(ARCH),x86_64)
SRCARCH := x86
endif
ifeq ($(ARCH),sparc64)
SRCARCH := sparc
endif
ifeq ($(ARCH),sh64)
SRCARCH := sh
endif
三、配置内核
内核的功能那么多,我们需要哪些部分,每个部分编译成什么形式(编进内核还是编成模块),每个部分的工作参数如何,这些都是可以配置的。因此,在开始编译之前,我们需要构建出一份配置清单,放到内核源码根目录下,命名为.config文件,然后根据此.config文件,编译出我们需要的内核。
但是,内核的配置项太多了,一个一个配,太麻烦了。而且,不同的CPU架构,所能配置的配置项集合,是不一样的。例如,某种CPU的某个功能特性要不要支持的配置项,就是与CPU架构有关的配置项。所以,内核提供了一种简单的配置方法。
以arm为例,具体做法如下。
a) 根据我们的目标CPU架构,从内核源码arch/arm/configs目录下,找一个与目标系统最接近的配置文件(例如s3c2410_defconfig),拷贝到内核源码根目录下,命名为.config。
注意,如果你是为当前PC机编译内核,最好拷贝如下文件到内核源码根目录下,做为初始配置文件。这个文件,是PC机当前运行的内核编译时使用的配置文件。
/lib/modules/`uname -r`/build/.config
这里顺便多说两句,PC机内核的配置文件,选择的功能真是多。不编不知道,一编才知道。Linux发行方这样做的目的,可能是想让所发行的Linux能够满足用户的各种需求吧。
b) 执行make menuconfig对此配置做一些需要的修改,退出时选择保存,就将新的配置更新到.config文件中了。
注
内核,是一个 *** 作系统的核心。它负责管理系统的进程、内存、设备驱动程序、文件和网络系统,决定着系统的性能和稳定性。Linux作为一个自由软件,在广大爱好者的支持下,内核版本不断更新。新的内核修订了旧内核的bug,并增加了许多新的特性。如果用户想要使用这些新特性,或想根据自己的系统度身定
制一个更高效,更稳定的内核,就需要重新编译内核。本文将以RedHat Linux 6.0(kernel
2.2.5)为 *** 作系统平台,介绍在Linux上进行内核编译的方法。
一、 下载新内核的源代码
目前,在Internet上提供Linux源代码的站点有很多,读者可以选择一个速度较快的站点下载。笔者是从站点www.kernelnotes.org上下载了Linux的最新开发版内核2.3.14的源代码,全部代码被压缩到一个名叫Linux-2.3.14.tar.gz的文件中。
二、 释放内核源代码
由于源代码放在一个压缩文件中,因此在配置内核之前,要先将源代码释放到指定的目录下。首先以root帐号登录,然后进入/usr/src子目录。如果用户在安装Linux时,安装了内核的源代码,则会发现一个linux-2.2.5的子目录。该目录下存放着内核2.2.5的源代码。此外,还会发现一个指向该目录的链接linux。删除该连接,然后将新内核的源文件拷贝到/usr/src目录中。
(一)、用tar命令释放内核源代码
# cd /usr/src
# tar zxvf Linux-2.3.14.tar.gz
文件释放成功后,在/usr/src目录下会生成一个linux子目录。其中包含了内核2.3.14的全部源代码。
(二)、将/usr/include/asm、/usr/inlude/linux、/usr/include/scsi链接到/usr/src/linux/include目录下的对应目录中。
# cd /usr/include
# rm -Rf asm linux
# ln -s /usr/src/linux/include/asm-i386 asm
# ln -s /usr/src/linux/include/linux linux
# ln -s /usr/src/linux/include/scsi scsi
(三)、删除源代码目录中残留的.o文件和其它从属文件。
# cd /usr/src/linux
# make mrproper
三、 配置内核
(一)、启动内核配置程序。
# cd /usr/src/linux
# make config
除了上面的命令,用户还可以使用make menuconfig命令启动一个菜单模式的配置界面。如果用户安装了X window系统,还可以执行make xconfig命令启动X window下的内核配置程序。
(二)、配置内核
Linux的
内核配置程序提供了一系列配置选项。对于每一个配置选项,用户可以回答"y"、"m"或"n"。其中"y"表示将相应特性的支持或设备驱动程序编译进内
核;"m"表示将相应特性的支持或设备驱动程序编译成可加载模块,在需要时,可由系统或用户自行加入到内核中去;"n"表示内核不提供相应特性或驱动程序
的支持。由于内核的配置选项非常多,本文只介绍一些比较重要的选项。
1、Code maturity level options(代码成熟度选项)
Prompt for development and/or incomplete code/drivers
(CONFIG_EXPERIMENTAL) [N/y/?]
如果用户想要使用还处于测试阶段的代码或驱动,可以选择“y”。如果想编译出一个稳定的内核,则要选择“n”。
1、 Processor type and features(处理器类型和特色)
(1)、Processor family (386, 486/Cx486, 586/K5/5x86/6x86, Pentium/K6/TSC, PPro/6x86MX) [PPro/6x86MX] 选择处理器类型,缺省为Ppro/6x86MX。
(2)、Maximum Physical Memory (1GB, 2GB) [1GB] 内核支持的最大内存数,缺省为1G。
(3)、Math emulation (CONFIG_MATH_EMULATION) [N/y/?] 协处理器仿真,缺省为不仿真。
(4)、MTRR (Memory Type Range Register) support (CONFIG_MTRR) [N/y/?]
选择该选项,系统将生成/proc/mtrr文件对MTRR进行管理,供X server使用。
(5)、Symmetric multi-processing support (CONFIG_SMP) [Y/n/?] 选择“y”,内核将支持对称多处理器。
2、 Loadable module support(可加载模块支持)
(1)、Enable loadable module support (CONFIG_MODULES) [Y/n/?] 选择“y”,内核将支持加载模块。
(2)、Kernel module loader (CONFIG_KMOD) [N/y/?] 选择“y”,内核将自动加载那些可加载模块,否则需要用户手工加载。
3、 General setup(一般设置)
(1)、Networking support (CONFIG_NET) [Y/n/?] 该选项设置是否在内核中提供网络支持。
(2)、PCI support (CONFIG_PCI) [Y/n/?] 该选项设置是否在内核中提供PCI支持。
(3)、PCI access mode (BIOS, Direct, Any) [Any] 该选项设置Linux探测PCI设备的方式。选择“BIOS”,Linux将使用BIOS;选择“Direct”,Linux将不通过BIOS;选择“Any”,Linux将直接探测PCI设备,如果失败,再使用BIOS。
(4)Parallel port support (CONFIG_PARPORT) [N/y/m/?] 选择“y”,内核将支持平行口。
4、 Plug and Play configuration(即插即用设备支持)
(1)、Plug and Play support (CONFIG_PNP) [Y/m/n/?] 选择“y”,内核将自动配置即插即用设备。
(2)、ISA Plug and Play support (CONFIG_ISAPNP) [Y/m/n/?] 选择“y”,内核将自动配置基于ISA总线的即插即用设备。
5、 Block devices(块设备)
(1)、Normal PC floppy disk support (CONFIG_BLK_DEV_FD) [Y/m/n/?] 选择“y”,内核将提供对软盘的支持。
(2)、Enhanced IDE/MFM/RLL disk/cdrom/tape/floppy support (CONFIG_BLK_DEV_IDE) [Y/m/n/?] 选择“y”,内核将提供对增强IDE硬盘、CDROM和磁带机的支持。
6、 Networking options(网络选项)
(1)、Packet socket (CONFIG_PACKET) [Y/m/n/?] 选择“y”,一些应用程序将使用Packet协议直接同网络设备通讯,而不通过内核中的其它中介协议。
(2)、Network firewalls (CONFIG_FIREWALL) [N/y/?] 选择“y”,内核将支持防火墙。
(3)、TCP/IP networking (CONFIG_INET) [Y/n/?] 选择“y”,内核将支持TCP/IP协议。
(4)The IPX protocol (CONFIG_IPX) [N/y/m/?] 选择“y”,内核将支持IPX协议。
(5)、Appletalk DDP (CONFIG_ATALK) [N/y/m/?] 选择“y”,内核将支持Appletalk DDP协议。
8、SCSI support(SCSI支持)
如果用户要使用SCSI设备,可配置相应选项。
9、Network device support(网络设备支持)
Network device support (CONFIG_NETDEVICES) [Y/n/?] 选择“y”,内核将提供对网络驱动程序的支持。
10、Ethernet (10 or 100Mbit)(10M或100M以太网)
在该项设置中,系统提供了许多网卡驱动程序,用户只要选择自己的网卡驱动就可以了。此外,用户还可以根据需要,在内核中加入对FDDI、PPP、SLIP和无线LAN(Wireless LAN)的支持。
11、Character devices(字符设备)
(1)、Virtual terminal (CONFIG_VT) [Y/n/?] 选择“y”,内核将支持虚拟终端。
(2)、Support for console on virtual terminal (CONFIG_VT_CONSOLE) [Y/n/?]
选择“y”,内核可将一个虚拟终端用作系统控制台。
(3)、Standard/generic (dumb) serial support (CONFIG_SERIAL) [Y/m/n/?]
选择“y”,内核将支持串行口。
(4)、Support for console on serial port (CONFIG_SERIAL_CONSOLE) [N/y/?]
选择“y”,内核可将一个串行口用作系统控制台。
12、Mice(鼠标)
PS/2 mouse (aka "auxiliary device") support (CONFIG_PSMOUSE) [Y/n/?] 如果用户使用的是PS/2鼠标,则该选项应该选择“y”。
13、Filesystems(文件系统)
(1)、Quota support (CONFIG_QUOTA) [N/y/?] 选择“y”,内核将支持磁盘限额。
(2)、Kernel automounter support (CONFIG_AUTOFS_FS) [Y/m/n/?] 选择“y”,内核将提供对automounter的支持,使系统在启动时自动 mount远程文件系统。
(3)、DOS FAT fs support (CONFIG_FAT_FS) [N/y/m/?] 选择“y”,内核将支持DOS FAT文件系统。
(4)、ISO 9660 CDROM filesystem support (CONFIG_ISO9660_FS) [Y/m/n/?]
选择“y”,内核将支持ISO 9660 CDROM文件系统。
(5)、NTFS filesystem support (read only) (CONFIG_NTFS_FS) [N/y/m/?]
选择“y”,用户就可以以只读方式访问NTFS文件系统。
(6)、/proc filesystem support (CONFIG_PROC_FS) [Y/n/?] /proc是存放Linux系统运行状态的虚拟文件系统,该项必须选择“y”。
(7)、Second extended fs support (CONFIG_EXT2_FS) [Y/m/n/?] EXT2是Linux的标准文件系统,该项也必须选择“y”。
14、Network File Systems(网络文件系统)
(1)、NFS filesystem support (CONFIG_NFS_FS) [Y/m/n/?] 选择“y”,内核将支持NFS文件系统。
(2)、SMB filesystem support (to mount WfW shares etc.) (CONFIG_SMB_FS)
选择“y”,内核将支持SMB文件系统。
(3)、NCP filesystem support (to mount NetWare volumes) (CONFIG_NCP_FS)
选择“y”,内核将支持NCP文件系统。
15、Partition Types(分区类型)
该选项支持一些不太常用的分区类型,用户如果需要,在相应的选项上选择“y”即可。
16、Console drivers(控制台驱动)
VGA text console (CONFIG_VGA_CONSOLE) [Y/n/?] 选择“y”,用户就可以在标准的VGA显示方式下使用Linux了。
17、Sound(声音)
Sound card support (CONFIG_SOUND) [N/y/m/?] 选择“y”,内核就可提供对声卡的支持。
18、Kernel hacking(内核监视)
Magic SysRq key (CONFIG_MAGIC_SYSRQ) [N/y/?] 选择“y”,用户就可以对系统进行部分控制。一般情况下选择“n”。
四、 编译内核
(一)、建立编译时所需的从属文件
# cd /usr/src/linux
# make dep
(二)、清除内核编译的目标文件
# make clean
(三)、编译内核
# make zImage
内核编译成功后,会在/usr/src/linux/arch/i386/boot目录中生成一个新内核的映像文件zImage。如果编译的内核很大的话,系统会提示你使用make bzImage命令来编译。这时,编译程序就会生成一个名叫bzImage的内核映像文件。
(四)、编译可加载模块
如果用户在配置内核时设置了可加载模块,则需要对这些模块进行编译,以便将来使用insmod命令进行加载。
# make modules
# make modelus_install
编译成功后,系统会在/lib/modules目录下生成一个2.3.14子目录,里面存放着新内核的所有可加载模块。
五、 启动新内核
(一)、将新内核和System.map文件拷贝到/boot目录下
# cp /usr/src/linux/arch/i386/boot/bzImage /boot/vmlinuz-2.3.14
# cp /usr/src/linux/System.map /boot/System.map-2.3.14
# cd /boot
# rm -f System.map
# ln -s System.map-2.3.14 System.map
(二)、配置/etc/lilo.conf文件。在该文件中加入下面几行:
default=linux-2.3.14
image=/boot/vmlinuz-2.3.14
label=linux-2.3.14
root=/dev/hda1
read-only
(三)、使新配置生效
# /sbin/lilo
(四)、重新启动系统
# /sbin/reboot
新内核如果不能正常启动,用户可以在LILO:提示符下启动旧内核。然后查出故障原因,重新编译新内核即可。
了解更多开源相关,去LUPA社区看看吧。
内核配置完成,输入make命令即可开始编译内核。如果没有修改Makefile文件并指定ARCH和CROSS_COMPILE参数,则须在命令行中指定:$ make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi-
目前大多数主机都是多核处理器,为了加快编译进度,可以开启多线程编译,在make的时候加上“-jN”即可,N的值为处理器核心数目的2倍。例如对于I7 4核处理器,可将N设置为8:
$ make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi- -j8
采用多线程编译的优点是能加快编译进度,。具体可以参照ZLG《嵌入式Linux开发教程(下册)》第1章。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)