(2)分别表示出第三次、第四次输出的数,然后根据第三次输出的数小于313,第四次输出的数大于313,可列出方程组,解出即可.
解 答 (1)第一次运算x=8,5x-2=5×8-2=38<313;
第二次运算x=32,5x-2=5×32-2=158<313;
第三次运算x=158,5x-2=5×158-2=788>313,
∴程序运算3次后停止.
(2)第一次输出的数为5x-2,第二次输出的数为5(5x-2)-2=25x-12,第三次输出的数为5[5(5x-2)-2]-2=125x-62,第四次输出的数为5{5[5(5x-2)-2]-2}-2=625x-312,由题意得625x-312>313,解得x>1.
第一次的结果为:2x-5,没有输出,则2x-5≤45,解得:x≤25;
第二次的结果为:2(2x-5)-5=4x-15,没有输出,则4x-15≤45,
解得:x≤15;
第三次的结果为:2(4x-15)-5=8x-35,输出,则8x-35>45,
解得:x>10,
综上可得:10<x≤15,
故输入的整数值是:11、12、13、14、15.
故答案为:11、12、13、14、15.
#include <iostream>using namespace std
int main()
{
cout <<"请输入一个数x:"<<endl
int x = 0
int y = 0
cin >> x
y = (x+2)*5-4
cout << "y = " << y << endl
return 0
}
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)