GA-BP神经网络模型预测的MATLAB程序问题

GA-BP神经网络模型预测的MATLAB程序问题,第1张

Matlab神经网络工具箱提供了一系列用于建立和训练bp神经网络模型函数命令,很难一时讲全。下面仅以一个例子列举部分函数的部分用法。更多的函数和用法请仔细查阅Neural Network Toolbox的帮助文档。 例子:利用bp神经网络模型建立z=sin(x+y)的模型并检验效果 %第1步。随机生成200个采样点用于训练 x=unifrnd(-5,5,1,200) y=unifrnd(-5,5,1,200) z=sin(x+y) %第2步。建立神经网络模型。其中参数一是输入数据的范围,参数二是各层神经元数量,参数三是各层传递函数类型。 N=newff([-5 5-5 5],[5,5,1],{'tansig','tansig','purelin'}) %第3步。训练。这里用批训练函数train。也可用adapt函数进行增长训练。 N=train(N,[xy],z) %第4步。检验训练成果。 [X,Y]=meshgrid(linspace(-5,5)) Z=sim(N,[X(:),Y(:)]') figure mesh(X,Y,reshape(Z,100,100)) hold on plot3(x,y,z,'.')

这个问题也困扰了我好久,终于解决了。给你个ga.m程序,新建m文件复制进去,再运行程序试试。

%ga.m

function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,...

termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)

% GA run a genetic algorithm

% function [x,endPop,bPop,traceInfo]=ga(bounds,evalFN,evalOps,startPop,opts,

% termFN,termOps,selectFN,selectOps,

% xOverFNs,xOverOps,mutFNs,mutOps)

%

% Output Arguments:

% x- the best solution found during the course of the run

% endPop - the final population

% bPop - a trace of the best population

% traceInfo- a matrix of best and means of the ga for each generation

%

% Input Arguments:

% bounds - a matrix of upper and lower bounds on the variables

% evalFN - the name of the evaluation .m function

% evalOps - options to pass to the evaluation function ([NULL])

% startPop - a matrix of solutions that can be initialized

% from initialize.m

% opts - [epsilon prob_ops display] change required to consider two

% solutions different, prob_ops 0 if you want to apply the

% genetic operators probabilisticly to each solution, 1 if

% you are supplying a deterministic number of operator

% applications and display is 1 to output progress 0 for

% quiet. ([1e-6 1 0])

% termFN - name of the .m termination function (['maxGenTerm'])

% termOps - options string to be passed to the termination function

% ([100]).

% selectFN - name of the .m selection function (['normGeomSelect'])

% selectOpts - options string to be passed to select after

% select(pop,#,opts) ([0.08])

% xOverFNS - a string containing blank seperated names of Xover.m

% files (['arithXover heuristicXover simpleXover'])

% xOverOps - A matrix of options to pass to Xover.m files with the

% first column being the number of that xOver to perform

% similiarly for mutation ([2 02 32 0])

% mutFNs - a string containing blank seperated names of mutation.m

% files (['boundaryMutation multiNonUnifMutation ...

% nonUnifMutation unifMutation'])

% mutOps - A matrix of options to pass to Xover.m files with the

% first column being the number of that xOver to perform

% similiarly for mutation ([4 0 06 100 34 100 34 0 0])

% Binary and Real-Valued Simulation Evolution for Matlab

% Copyright (C) 1996 C.R. Houck, J.A. Joines, M.G. Kay

%

% C.R. Houck, J.Joines, and M.Kay. A genetic algorithm for function

% optimization: A Matlab implementation. ACM Transactions on Mathmatical

% Software, Submitted 1996.

%

% This program is free softwareyou can redistribute it and/or modify

% it under the terms of the GNU General Public License as published by

% the Free Software Foundationeither version 1, or (at your option)

% any later version.

%

% This program is distributed in the hope that it will be useful,

% but WITHOUT ANY WARRANTYwithout even the implied warranty of

% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

% GNU General Public License for more details. A copy of the GNU

% General Public License can be obtained from the

% Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

%%$Log: ga.m,v $

%Revision 1.10 1996/02/02 15:03:00 jjoine

% Fixed the ordering of imput arguments in the comments to match

% the actual order in the ga function.

%

%Revision 1.9 1995/08/28 20:01:07 chouck

% Updated initialization parameters, updated mutation parameters to reflect

% b being the third option to the nonuniform mutations

%

%Revision 1.8 1995/08/10 12:59:49 jjoine

%Started Logfile to keep track of revisions

%

n=nargin

if n<2 | n==6 | n==10 | n==12

disp('Insufficient arguements')

end

if n<3 %Default evalation opts.

evalOps=[]

end

if n<5

opts = [1e-6 1 0]

end

if isempty(opts)

opts = [1e-6 1 0]

end

if any(evalFN<48) %Not using a .m file

if opts(2)==1 %Float ga

e1str=['x=c1c1(xZomeLength)=', evalFN '']

e2str=['x=c2c2(xZomeLength)=', evalFN '']

else %Binary ga

e1str=['x=b2f(endPop(j,:),bounds,bits)endPop(j,xZomeLength)=',...

evalFN '']

end

else %Are using a .m file

if opts(2)==1 %Float ga

e1str=['[c1 c1(xZomeLength)]=' evalFN '(c1,[gen evalOps])']

e2str=['[c2 c2(xZomeLength)]=' evalFN '(c2,[gen evalOps])']

else %Binary ga

e1str=['x=b2f(endPop(j,:),bounds,bits)[x v]=' evalFN ...

'(x,[gen evalOps])endPop(j,:)=[f2b(x,bounds,bits) v]']

end

end

if n<6 %Default termination information

termOps=[100]

termFN='maxGenTerm'

end

if n<12 %Default muatation information

if opts(2)==1 %Float GA

mutFNs=['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation']

mutOps=[4 0 06 termOps(1) 34 termOps(1) 34 0 0]

else %Binary GA

mutFNs=['binaryMutation']

mutOps=[0.05]

end

end

if n<10 %Default crossover information

if opts(2)==1 %Float GA

xOverFNs=['arithXover heuristicXover simpleXover']

xOverOps=[2 02 32 0]

else %Binary GA

xOverFNs=['simpleXover']

xOverOps=[0.6]

end

end

if n<9 %Default select opts only i.e. roullete wheel.

selectOps=[]

end

if n<8 %Default select info

selectFN=['normGeomSelect']

selectOps=[0.08]

end

if n<6 %Default termination information

termOps=[100]

termFN='maxGenTerm'

end

if n<4 %No starting population passed given

startPop=[]

end

if isempty(startPop) %Generate a population at random

%startPop=zeros(80,size(bounds,1)+1)

startPop=initializega(80,bounds,evalFN,evalOps,opts(1:2))

end

if opts(2)==0 %binary

bits=calcbits(bounds,opts(1))

end

xOverFNs=parse(xOverFNs)

mutFNs=parse(mutFNs)

xZomeLength = size(startPop,2) %Length of the xzome=numVars+fittness

numVar = xZomeLength-1 %Number of variables

popSize = size(startPop,1) %Number of individuals in the pop

endPop = zeros(popSize,xZomeLength)%A secondary population matrix

c1 = zeros(1,xZomeLength) %An individual

c2 = zeros(1,xZomeLength) %An individual

numXOvers= size(xOverFNs,1) %Number of Crossover operators

numMuts = size(mutFNs,1) %Number of Mutation operators

epsilon = opts(1)%Threshold for two fittness to differ

oval = max(startPop(:,xZomeLength))%Best value in start pop

bFoundIn = 1 %Number of times best has changed

done = 0 %Done with simulated evolution

gen = 1 %Current Generation Number

collectTrace = (nargout>3) %Should we collect info every gen

floatGA = opts(2)==1 %Probabilistic application of ops

display = opts(3)%Display progress

while(~done)

%Elitist Model

[bval,bindx] = max(startPop(:,xZomeLength))%Best of current pop

best = startPop(bindx,:)

if collectTrace

traceInfo(gen,1)=gen %current generation

traceInfo(gen,2)=startPop(bindx,xZomeLength) %Best fittness

traceInfo(gen,3)=mean(startPop(:,xZomeLength))%Avg fittness

traceInfo(gen,4)=std(startPop(:,xZomeLength))

end

if ( (abs(bval - oval)>epsilon) | (gen==1)) %If we have a new best sol

if display

fprintf(1,'\n%d %f\n',gen,bval) %Update the display

end

if floatGA

bPop(bFoundIn,:)=[gen startPop(bindx,:)]%Update bPop Matrix

else

bPop(bFoundIn,:)=[gen b2f(startPop(bindx,1:numVar),bounds,bits)...

startPop(bindx,xZomeLength)]

end

bFoundIn=bFoundIn+1 %Update number of changes

oval=bval %Update the best val

else

if display

fprintf(1,'%d ',gen) %Otherwise just update num gen

end

end

endPop = feval(selectFN,startPop,[gen selectOps])%Select

if floatGA %Running with the model where the parameters are numbers of ops

for i=1:numXOvers,

for j=1:xOverOps(i,1),

a = round(rand*(popSize-1)+1) %Pick a parent

b = round(rand*(popSize-1)+1) %Pick another parent

xN=deblank(xOverFNs(i,:)) %Get the name of crossover function

[c1 c2] = feval(xN,endPop(a,:),endPop(b,:),bounds,[gen xOverOps(i,:)])

if c1(1:numVar)==endPop(a,(1:numVar)) %Make sure we created a new

c1(xZomeLength)=endPop(a,xZomeLength)%solution before evaluating

elseif c1(1:numVar)==endPop(b,(1:numVar))

c1(xZomeLength)=endPop(b,xZomeLength)

else

%[c1(xZomeLength) c1] = feval(evalFN,c1,[gen evalOps])

eval(e1str)

end

if c2(1:numVar)==endPop(a,(1:numVar))

c2(xZomeLength)=endPop(a,xZomeLength)

elseif c2(1:numVar)==endPop(b,(1:numVar))

c2(xZomeLength)=endPop(b,xZomeLength)

else

%[c2(xZomeLength) c2] = feval(evalFN,c2,[gen evalOps])

eval(e2str)

end

endPop(a,:)=c1

endPop(b,:)=c2

end

end

for i=1:numMuts,

for j=1:mutOps(i,1),

a = round(rand*(popSize-1)+1)

c1 = feval(deblank(mutFNs(i,:)),endPop(a,:),bounds,[gen mutOps(i,:)])

if c1(1:numVar)==endPop(a,(1:numVar))

c1(xZomeLength)=endPop(a,xZomeLength)

else

%[c1(xZomeLength) c1] = feval(evalFN,c1,[gen evalOps])

eval(e1str)

end

endPop(a,:)=c1

end

end

else %We are running a probabilistic model of genetic operators

for i=1:numXOvers,

xN=deblank(xOverFNs(i,:)) %Get the name of crossover function

cp=find(rand(popSize,1)<xOverOps(i,1)==1)

if rem(size(cp,1),2) cp=cp(1:(size(cp,1)-1))end

cp=reshape(cp,size(cp,1)/2,2)

for j=1:size(cp,1)

a=cp(j,1)b=cp(j,2)

[endPop(a,:) endPop(b,:)] = feval(xN,endPop(a,:),endPop(b,:),...

bounds,[gen xOverOps(i,:)])

end

end

for i=1:numMuts

mN=deblank(mutFNs(i,:))

for j=1:popSize

endPop(j,:) = feval(mN,endPop(j,:),bounds,[gen mutOps(i,:)])

eval(e1str)

end

end

end

gen=gen+1

done=feval(termFN,[gen termOps],bPop,endPop)%See if the ga is done

startPop=endPop %Swap the populations

[bval,bindx] = min(startPop(:,xZomeLength))%Keep the best solution

startPop(bindx,:) = best %replace it with the worst

end

[bval,bindx] = max(startPop(:,xZomeLength))

if display

fprintf(1,'\n%d %f\n',gen,bval)

end

x=startPop(bindx,:)

if opts(2)==0 %binary

x=b2f(x,bounds,bits)

bPop(bFoundIn,:)=[gen b2f(startPop(bindx,1:numVar),bounds,bits)...

startPop(bindx,xZomeLength)]

else

bPop(bFoundIn,:)=[gen startPop(bindx,:)]

end

if collectTrace

traceInfo(gen,1)=gen %current generation

traceInfo(gen,2)=startPop(bindx,xZomeLength)%Best fittness

traceInfo(gen,3)=mean(startPop(:,xZomeLength))%Avg fittness

end

是的。

matlab是一个具有强大计算能力和仿真能力的数学软件,Matlab是一个具有强大计算能力和仿真能力的数软件,更多的侧重于科学计算不同于别的。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/7976763.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-12
下一篇 2023-04-12

发表评论

登录后才能评论

评论列表(0条)

保存