神经网络算法的人工神经网络

神经网络算法的人工神经网络,第1张

《深度学习精要(基于R语言)》学习笔记

机器学习主要用于开发和使用那些从原始数据中学习、总结出来的用于进行预测的算法。

深度学习是一种强大的多层架构,可以用于模式识别、信号检测以及分类或预测等多个领域。

神经网络包括一系列的神经元,或者叫作节点,它们彼此连结并处理输入。神经元之间的连结经过加权处理,权重取决于从数据中学习、总结出的使用函数。一组神经元的激活和权重(从数据中自适应地学习)可以提供给其他的神经元,其中一些最终神经元的激活就是预测。

经常选择的激活函数是sigmoid函数以及双曲正切函数tanh,因为径向基函数是有效的函数逼近,所以有时也会用到它们。

权重是从每个隐藏单元到每个输出的路径,对第i个的输出通过(w_i)表示。如创建隐藏层的权重,这些权重也是从数据中学习得到的。分类会经常使用一种最终变换,softmax函数。线性回归经常使用恒等(identity)函数,它返回输入值。权重必须从数据中学习得到,权重为零或接近零基本上等同于放弃不必要的关系。

R中神经网络相关包:

一旦集群完成初始化,可以使用R或本地主机(127001:54321)提供的Web接口与它连接。

如果数据集已经加载到R,使用ash2o()函数:

如果数据没有载入R,可以直接导入到h2o中:

也可以直接导入网络上的文件:

导入基于识别手写体数字,数据集的每一列(即特征),表示图像的一个像素。每张图像都经过标准化处理,转化成同样的大小,所以所有图像的像素个数都相同。第一列包含真实的数据标签,其余各列是黑暗像素的值,它用于分类。

使用caret包训练模型:

生成数据的一组预测,查看柱状图:

跟训练集数据柱状图对比,很明显模型不是最优的。

通过混淆矩阵检查模型性能:

No Information Rate(无信息率)指不考虑任何信息而仅仅通过猜测来决定最频繁的类的准确度期望。在情形“1”中,它在1116%的时间中发生。P值(P-Value [Acc > NIR])检验了观测准确度(Accuracy : 03674)是否显著不同于无信息率(1116%)。

Class: 0的灵敏度(Sensitivity)可以解释为:8907%的数字0被正确地预测为0。特异度(Specificity)可以解释为:9514%的预测为非数字0被预测为不是数字0。

检出率(Detection Rate)是真阳性的百分比,而最后的检出预防度(detection prevalence)是预测为阳性的实例比例,不管它们是否真的为阳性。

平衡准确度(balanced accuracy)是灵敏度和特异度的平均值。

接下来我们通过增加神经元的个数来提升模型的性能,其代价是模型的复杂性会显著增加:

隐藏神经元的数量从5个增加到10个,样本内性能的总准确度从3674% 提升到了 654%。我们继续增加隐藏神经元的数量:

增加到40个神经元后准确度跟10个神经元的一样,还是654%。如果是商业问题,还需要继续调节神经元的数量和衰变率。但是作为学习,模型对数字9的表现比较差,对其他数字都还行。

RSNNS包提供了使用斯图加特神经网络仿真器(Stuttgart Neural Network Simulator , SNNS)模型的接口,但是,对基本的、单隐藏层的、前馈的神经网络,我们可以使用mlp()这个更为方便的封装函数,它的名称表示多层感知器(multi-layer perceptron)。

RSNNS包要求输入为矩阵、响应变量为一个哑变量的 矩阵 ,因此每个可能的类表示成矩阵列中的 0/1 编码。

通过decodeClassLabels()函数可以很方便的将数据转换为哑变量矩阵。

预测结果的值为1-10,但是实际值为0-9,所以在生成混淆矩阵时,需要先减去1:

RSNNS包的学习算法使用了相同数目的隐藏神经元,计算结果的性能却有极大提高。

函数I()有两个作用:

1在对dataframe的调用中将对象包含在I()中来保护它,防止字符向量到factor的转换和名称的删除,并确保矩阵作为单列插入。

2在formula函数中,它被用来禁止将“+”、“-”、“”和“^”等运算符解释为公式运算符,因此它们被用作算术运算符。

从RSNNS包返回的预测值(predml4)中可以看到,一个观测可能有40%的概率成为“5”,20%的概率成为“6”,等等。最简单的方法就是基于高预测概率来对观测进行分类。RSNNS包有一种称为赢者通吃(winner takes all,WTA)的方法,只要没有关系就选择概率最高的类,最高的概率高于用户定义的阈值(这个阈值可以是0),而其他类的预测概率都低于最大值减去另一个用户定义的阈值,否则观测的分类就不明了。如果这两个阈值都是0(缺省),那么最大值必然存在并且唯一。这种方法的优点是它提供了某种质量控制。

但是在实际应用中,比如一个医学背景下,我们收集了病人的多种生物指标和基因信息,用来分类确定他们是否健康,是否有患癌症的风险,是否有患心脏病的风险,即使有40%的患癌概率也需要病人进一步做检查,即便他健康的概率是60%。RSNNS包中还提供一种分类方法称为“402040”,如果一个值高于用户定义的阈值,而所有的其他值低于用户定义的另一个阈值。如果多个值都高于第一个阈值,或者任何值都不低于第二个阈值,我们就把观测定性为未知的。这样做的目的是再次给出了某种质量控制。

“0”分类表示未知的预测。

通常来说,过拟合指模型在训练集上的性能优于测试集。过拟合发生在模型正好拟合了训练数据的噪声部分的时候。因为考虑了噪声,它似乎更准确,但一个数据集和下一个数据集的噪声不同,这种准确度不能运用于除了训练数据之外的任何数据 — 它没有一般化。

使用RSNNS模型对样本外数据预测:

模型在第一个5000行上的准确度为851%,在第二个5000行上的准确度减少为80%,损失超过5%,换句话说,使用训练数据来评价模型性能导致了过度乐观的准确度估计,过度估计是5%。

这个问题我们后面再处理。

我自己总结的:

1、神经网络算法隐含层的选取

11 构造法

首先运用三种确定隐含层层数的方法得到三个隐含层层数,找到最小值和最大值,然后从最小值开始逐个验证模型预测误差,直到达到最大值。最后选取模型误差最小的那个隐含层层数。该方法适用于双隐含层网络。

12 删除法

单隐含层网络非线性映射能力较弱,相同问题,为达到预定映射关系,隐层节点要多一些,以增加网络的可调参数,故适合运用删除法。

13黄金分割法

算法的主要思想:首先在[a,b]内寻找理想的隐含层节点数,这样就充分保证了网络的逼近能力和泛化能力。为满足高精度逼近的要求,再按照黄金分割原理拓展搜索区间,即得到区间[b,c](其中b=0619(c-a)+a),在区间[b,c]中搜索最优,则得到逼近能力更强的隐含层节点数,在实际应用根据要求,从中选取其一即可。

   这两天在公司做PM实习,主要是自学一些CV的知识,以了解产品在解决一些在图像识别、图像搜索方面的问题,学习的主要方式是在知网检索了67篇国内近3年计算机视觉和物体识别的硕博士论文。由于时间关系,后面还会继续更新相似度计算(以图搜图)等方面的学习成果

   将这两天的学习成果在这里总结一下。你将会看到计算机视觉在解决特定物体识别问题(主要是卷积神经网络CNNs)的基础过程和原理,但这里不会深入到技术的实现层面。

  计算机视觉(Computer vision)是一门研究如何使机器“看”的科学,更进一步的说,就是指用摄影机和计算机代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图像处理,用计算机处理成为更适合人眼观察或传送给仪器检测的图像。

                                         ————维基百科

  通常而言,计算机视觉的研究包括三个层次:

(1)底层特征的研究:

  这一层次的研究主要聚焦如何高效提取出图像对象具有判别性能的特征,具体的研究内容通常包括:物体识别、字符识别等

(2)中层语义特征的研究:

   该层次的研究在于在识别出对象的基础上,对其位置、边缘等信息能够准确区分。现在比较热门的:图像分割;语义分割;场景标注等,都属于该领域的范畴

(3)高层语义理解:

  这一层次建立在前两层的基础上,其核心在于“理解”一词。 目标在于对复杂图像中的各个对象完成语义级别的理解。这一层次的研究常常应用于:场景识别、图像摘要生成及图像语义回答等。

  而我研究的问题主要隶属于底层特征和中层语义特征研究中的物体识别和场景标注问题。

人类的视觉工作模式是这样的:

   首先,我们大脑中的神经元接收到大量的信息微粒,但我们的大脑还并不能处理它们。

   于是接着神经元与神经元之间交互将大量的微粒信息整合成一条又一条的线。

   接着,无数条线又整合成一个个轮廓。

   最后多个轮廓累加终于聚合我们现在眼前看到的样子。

  计算机科学受到神经科学的启发,也采用了类似的工作方式。具体而言,图像识别问题一般都遵循下面几个流程

  (1)获取底层信息。获取充分且清洁的高质量数据往往是图像识别工作能否成功的关键所在

  (2)数据预处理工作,在图像识别领域主要包括四个方面的技术:去噪处理(提升信噪比)、图像增强和图像修复(主要针对不够清晰或有破损缺失的图像);归一化处理(一方面是为了减少开销、提高算法的性能,另一方面则是为了能成功使用深度学习等算法,这类算法必须使用归一化数据)。

  (3)特征提取,这一点是该领域的核心,也是本文的核心。图像识别的基础是能够提取出足够高质量,能体现图像独特性和区分度的特征。

  过去在10年代之前我们主要还是更多的使用传统的人工特征提取方法,如PCA\LCA等来提取一些人工设计的特征,主要的方法有(HOG、LBP以及十分著名的SIFT算法)。但是这些方法普遍存在(a)一般基于图像的一些提层特征信息(如色彩、纹理等)难以表达复杂的图像高层语义,故泛化能力普遍比较弱。(b)这些方法一般都针对特定领域的特定应用设计,泛化能力和迁移的能力大多比较弱。

  另外一种思路是使用BP方法,但是毕竟BP方法是一个全连接的神经网络。这以为这我们非常容易发生过拟合问题(每个元素都要负责底层的所有参数),另外也不能根据样本对训练过程进行优化,实在是费时又费力。

  因此,一些研究者开始尝试把诸如神经网络、深度学习等方法运用到特征提取的过程中,以十几年前深度学习方法在业界最重要的比赛ImageNet中第一次战胜了SIFT算法为分界线,由于其使用权重共享和特征降采样,充分利用了数据的特征。几乎每次比赛的冠军和主流都被深度学习算法及其各自改进型所占领。其中,目前使用较多又最为主流的是CNN算法,在第四部分主要也研究CNN方法的机理。

  上图是一个简易的神经网络,只有一层隐含层,而且是全连接的(如图,上一层的每个节点都要对下一层的每个节点负责。)具体神经元与神经元的作用过程可见下图。

  在诸多传统的神经网络中,BP算法可能是性能最好、应用最广泛的算法之一了。其核心思想是:导入训练样本、计算期望值和实际值之间的差值,不断地调整权重,使得误差减少的规定值的范围内。其具体过程如下图:

  一般来说,机器学习又分成浅层学习和深度学习。传统的机器学习算法,如SVM、贝叶斯、神经网络等都属于浅层模型,其特点是只有一个隐含层。逻辑简单易懂、但是其存在理论上缺乏深度、训练时间较长、参数很大程度上依赖经验和运气等问题。

  如果是有多个隐含层的多层神经网络(一般定义为大于5层),那么我们将把这个模型称为深度学习,其往往也和分层训练配套使用。这也是目前AI最火的领域之一了。如果是浅层模型的问题在于对一个复杂函数的表示能力不够,特别是在复杂问题分类情况上容易出现分类不足的弊端,深度网络的优势则在于其多层的架构可以分层表示逻辑,这样就可以用简单的方法表示出复杂的问题,一个简单的例子是:

  如果我们想计算sin(cos(log(exp(x)))),

  那么深度学习则可分层表示为exp(x)—>log(x)—>cos(x)—>sin(x)

  图像识别问题是物体识别的一个子问题,其鲁棒性往往是解决该类问题一个非常重要的指标,该指标是指分类结果对于传入数据中的一些转化和扭曲具有保持不变的特性。这些转化和扭曲具体主要包括了:

(1)噪音(2)尺度变化(3)旋转(4)光线变化(5)位移

  该部分具体的内容,想要快速理解原理的话推荐看[知乎相关文章] ( https://wwwzhihucom/searchtype=content&q=CNN ),

  特别是其中有些高赞回答中都有很多动图和动画,非常有助于理解。

  但核心而言,CNN的核心优势在于 共享权重 以及 感受野 ,减少了网络的参数,实现了更快的训练速度和同样预测结果下更少的训练样本,而且相对于人工方法,一般使用深度学习实现的CNN算法使用无监督学习,其也不需要手工提取特征。

CNN算法的过程给我的感觉,个人很像一个“擦玻璃”的过程。其技术主要包括了三个特性:局部感知、权重共享和池化。

  CNN中的神经元主要分成了两种:

(a)用于特征提取的S元,它们一起组成了卷积层,用于对于中的每一个特征首先局部感知。其又包含很关键的阈值参数(控制输出对输入的反映敏感度)和感受野参数(决定了从输入层中提取多大的空间进行输入,可以简单理解为擦玻璃的抹布有多大)

(b)抗形变的C元,它们一起组成了池化层,也被称为欠采样或下采样。主要用于特征降维,压缩数据和参数的数量,减小过拟合,同时提高模型的容错性。

(c)激活函数,及卷积层输出的结果要经过一次激励函数才会映射到池化层中,主要的激活函数有Sigmoid函数、Tanh函数、ReLU、Leaky ReLU、ELU、Maxout等。

  也许你会抱有疑问,CNN算法和传统的BP算法等究竟有什么区别呢。这就会引出区域感受野的概念。在前面我们提到,一个全连接中,较高一层的每个神经元要对低层的每一个神经元负责,从而导致了过拟合和维度灾难的问题。但是有了区域感受野和,每个神经元只需要记录一个小区域,而高层会把这些信息综合起来,从而解决了全连接的问题。

  了解区域感受野后,你也许会想,区域感受野的底层神经元具体是怎么聚合信息映射到上一层的神经元呢,这就要提到重要的卷积核的概念。这个过程非常像上面曾提到的“神经元与神经元的联系”一图,下面给大家一个很直观的理解。

  上面的这个过程就被称为一个卷积核。在实际应用中,单特征不足以被系统学习分类,因此我们往往会使用多个滤波器,每个滤波器对应1个卷积核,也对应了一个不同的特征。比如:我们现在有一个人脸识别应用,我们使用一个卷积核提取出眼睛的特征,然后使用另一个卷积核提取出鼻子的特征,再用一个卷积核提取出嘴巴的特征,最后高层把这些信息聚合起来,就形成了分辨一个人与另一个人不同的判断特征。

  现在我们已经有了区域感受野,也已经了解了卷积核的概念。但你会发现在实际应用中还是有问题:

  给一个100 100的参数空间,假设我们的感受野大小是10 10,那么一共有squar(1000-10+1)个,即10的六次方个感受野。每个感受野中就有100个参数特征,及时每个感受野只对应一个卷积核,那么空间内也会有10的八次方个次数,,更何况我们常常使用很多个卷积核。巨大的参数要求我们还需要进一步减少权重参数,这就引出了权重共享的概念。

   用一句话概括就是,对同一个特征图,每个感受野的卷积核是一样的,如这样 *** 作后上例只需要100个参数。

  池化是CNN技术的最后一个特性,其基本思想是: 一块区域有用的图像特征,在另一块相似的区域中很可能仍然有用。即我们通过卷积得到了大量的边缘EDGE数据,但往往相邻的边缘具有相似的特性,就好像我们已经得到了一个强边缘,再拥有大量相似的次边缘特征其实是没有太大增量价值的,因为这样会使得系统里充斥大量冗余信息消耗计算资源。 具体而言,池化层把语义上相似的特征合并起来,通过池化 *** 作减少卷积层输出的特征向量,减少了参数,缓解了过拟合问题。常见的池化 *** 作主要包括3种:

分别是最大值池化(保留了图像的纹理特征)、均值池化(保留了图像的整体特征)和随机值池化。该技术的弊端是容易过快减小数据尺寸,目前趋势是用其他方法代替池化的作用,比如胶囊网络推荐采用动态路由来代替传统池化方法,原因是池化会带来一定程度上表征的位移不变性,传统观点认为这是一个优势,但是胶囊网络的作者Hinton et al认为图像中位置信息是应该保留的有价值信息,利用特别的聚类评分算法和动态路由的方式可以学习到更高级且灵活的表征,有望冲破目前卷积网络构架的瓶颈。

  CNN总体来说是一种结构,其包含了多种网络模型结构,数目繁多的的网络模型结构决定了数据拟合能力和泛化能力的差异。其中的复杂性对用户的技术能力有较高的要求。此外,CNN仍然没有很好的解决过拟合问题和计算速度较慢的问题。

   该部分的核心参考文献:

《深度学习在图像识别中的应用研究综述》郑远攀,李广阳,李晔[J]计算机工程与应用,2019,55(12):20-36

  深度学习技术在计算机图像识别方面的领域应用研究是目前以及可预见的未来的主流趋势,在这里首先对深度学习的基本概念作一简介,其次对深度学习常用的结构模型进行概述说明,主要简述了深度信念网络(DBN)、卷积神经网络(CNN)、循环神经网络(RNN)、生成式对抗网络(GAN)、胶囊网络(CapsNet)以及对各个深度模型的改进模型做一对比分析。

  深度学习按照学习架构可分为生成架构、判别架构及混合架构。

其生成架构模型主要包括:

  受限波尔兹曼机、自编码器、深层信念网络等。判别架构模型主要包括:深层前馈网络、卷积神经网络等。混合架构模型则是这两种架构的集合。深度学习按数据是否具有标签可分为非监督学习与监督学习。非监督学习方法主要包括:受限玻尔兹曼机、自动编码器、深层信念网络、深层玻尔兹曼机等。

  监督学习方法主要包括:深层感知器、深层前馈网络、卷积神经网络、深层堆叠网络、循环神经网络等。大量实验研究表明,监督学习与非监督学习之间无明确的界限,如:深度信念网络在训练过程中既用到监督学习方法又涉及非监督学习方法。

[1]周彬 多视图视觉检测关键技术及其应用研究[D]浙江大学,2019

[2]郑远攀,李广阳,李晔深度学习在图像识别中的应用研究综述[J]计算机工程与应用,2019,55(12):20-36

[3]逄淑超 深度学习在计算机视觉领域的若干关键技术研究[D]吉林大学,2017

[4]段萌 基于卷积神经网络的图像识别方法研究[D]郑州大学,2017

[5]李彦冬 基于卷积神经网络的计算机视觉关键技术研究[D]电子科技大学,2017

[6]李卫 深度学习在图像识别中的研究及应用[D]武汉理工大学,2014

[7]许可 卷积神经网络在图像识别上的应用的研究[D]浙江大学,2012

[8]CSDN、知乎、机器之心、维基百科

人工神经网络(Artificial Neural Network,即ANN )是从信息处理角度对人脑神经元网络进行抽象,是20世纪80年代以来人工智能领域兴起的研究热点,其本质是一种运算模型,由大量的节点(或称神经元)之间相互联接构成,在模式识别、智能机器人、自动控制、生物、医学、经济等领域已成功地解决了许多现代计算机难以解决的实际问题,表现出了良好的智能特性。

人工神经网络是由大量处理单元互联组成的非线性、自适应信息处理系统,它是在现代 神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。人工神经网络具有四个基本特征:

(1)非线性– 非线性关系是自然界的普遍特性,人工神经元处于激活或抑制二种不同的状态,这种行为在数学上表现为一种非线性

人工神经网络

关系。具有阈值的神经元构成的网络具有更好的性能,可以提高容错性和存储容量。

(2)非局限性– 一个 神经网络通常由多个神经元广泛连接而成。一个系统的整体行为不仅取决于单个神经元的特征,而且可能主要由单元之间的相互作用、相互连接所决定。通过单元之间的大量连接模拟大脑的非局限性。联想 记忆是非局限性的典型例子。

(3)非常定性 –人工神经网络具有自适应、自组织、自学习能力。神经网络不但处理的信息可以有各种变化,而且在处理信息的同时,非线性动力系统本身也在不断变化。经常采用迭代过程描写动力系统的演化过程。

(4)非凸性–一个系统的演化方向,在一定条件下将取决于某个特定的状态函数。例如 能量函数,它的极值相应于系统比较稳定的状态。非凸性是指这种函数有多个极值,故系统具有多个较稳定的平衡态,这将导致系统演化的多样性。

人工神经网络中,神经元处理单元可表示不同的对象,例如特征、字母、概念,或者一些有意义的抽象模式。网络中处理单元的类型分为三类:输入单元、输出单元和隐单元。输入单元接受外部 世界的信号与数据;输出单元实现系统处理结果的输出;隐单元是处在输入和输出单元之间,不能

人工神经网络

由系统外部观察的单元。神经元间的连接权值反映了单元间的连接强度,信息的表示和处理体现在网络处理单元的连接关系中。

总结:人工神经网络是一种非程序化、 适应性、大脑风格的信息处理 ,其本质是通过网络的变换和动力学行为得到一种并行分布式的信息处理功能,并在不同程度和层次上模仿人脑神经系统的信息处理功能。

卷积神经网络(Convolutional Neural Networks, CNN)——更有效率地提取特征

图像识别问题本质上就是分类问题,比如我们要区分猫和狗,那么我们就需要构建一个模型,将照片丢进去后,模型能输出猫或者狗的概率有多大。在做图像识别时首要的就是要提取的特征,那么如何提取的特征呢?前面讲到了前向全连接网络,我们可以尝试用前向全连接网络提取。假设的像素是100100,如果如片是彩色的,每个像素都有RGB三种颜色的数值。因此,一张是有一个三维向量构成的,一维是长100,一维是宽100,还有一维是R、G、B 3个通道(channels)。把这个三维向量拉直作为一个一维向量,长度就是1001003。

我们在区分一张时,我们观察的往往是的局部的、最重要的特征。 比如上是一只鸟,我们可能通过嘴巴、眼睛、爪子等就可以判断出是一只鸟了。因此,输入层的每一个神经元没有必要看的全局,只需要看一个局部就行了。

在两张不同的上,同一个特征区域可能处于不同位置。 比如鸟嘴的局部特征区域在下面这两张图上就处在不同的位置上。那么如何才能让两个不同的神经元在看到这两个不同的感受野时,能产生一致的特征值呢?

对上面的内容进行一个总结:

(1)我们设置一个局部感受野,假设感受野的大小为WHC,其中W表示感受野的宽度,H表示感受野的高度,C表示感受野的通道数。那么对应的神经元的参数的个数就为:WHC个权值加1个偏置。在卷积神经网络中,我们称这样一个神经元为一个 滤波器(filter)

(3)我们通过滑动的方式让感受野铺满整个,假设的尺寸是W1H1C,滑动步长为S,零填充的数量为P。假设感受野的个数是W2H2,其中,

(4)我们让所有感受野的观测滤波器参数进行共享,即相当于一个滤波器通过滑动扫描的方式扫描了所有感受野。

(5)我们设置多个滤波器,假设滤波器的个数为K,这K个滤波器都通过滑动扫描的方式扫过整个。此时参数的个数为:(WHC+1)K。

(6)由于每个滤波器每经过一个感受野都会进行一次计算输出一个值,所以输出的维度为:W2H2K。我们将这个输出称为特征图,所以特征图宽度为W2,高度为H2,通道数C2=K。

举个例子: 假设某个的大小是1001003,设置滤波器的大小为333,滤波器的个数为64,设置步长S=1,设置零填充的数量为P=0。那么卷积神经网络的参数为, 相比前向全连接 个参数,参数的个数缩小了几个数量级。

输出特征图的宽度和高度均为, 输出特征图的通道数为, 所以输出特征图的维度为989864。

如果在上面输出的基础上再叠加一层卷积神经网络,滤波器的设置宽和高可以不变,但是通道数不再是3了,而是变成64了,因为输入特征图的通道数已经变64了。假设滤波器的大小为3364,滤波器的个数为32,设置步长S=1,设置零填充的数量为P=0。可以计算出来,新的输出特征图的维度是969632。

以上就是卷积神经网络(CNN)的解析。但是CNN一般不是单独用的,因为一般提取的特征是为了分类,还需要进一步处理,常见的形式如下图所示。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/12177631.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-21
下一篇 2023-05-21

发表评论

登录后才能评论

评论列表(0条)

保存