神经网络的分类

神经网络的分类,第1张

  BP神经网络:BP 神经网络是一种神经网络学习算法。其由输入层、中间层、输出层组成的阶层型神经网络,中间层可扩展为多层。RBF(径向基)神经网络:径向基函数(RBF-Radial Basis Function)神经网络是具有单隐层的三层前馈网络。它模拟了人脑中局部调整、相互覆盖接收域的神经网络结构。感知器神经网络:是一个具有单层计算神经元的神经网络,网络的传递函数是线性阈值单元。主要用来模拟人脑的感知特征。线性神经网络:是比较简单的一种神经网络,由一个或者多个线性神经元构成。采用线性函数作为传递函数,所以输出可以是任意值。自组织神经网络:自组织神经网络包括自组织竞争网络、自组织特征映射网络、学习向量量化等网络结构形式。K近邻算法: K最近邻分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。

用样本去训练一个BP网络,然后用新的样本作为输入,再通过这个已经训练好的BP网络,得到的数据就是仿真的结果,这就是BP网络仿真。我们训练一个BP网络就好像是在训练一个神经系统,然后用这个已经具备分析能力的神经系统去分析事情,这就是为什么要仿真,说到底就是为了用。仿真的作用你可以从BP神经网络的用途上去看,例如很经典的可以用来做分类器等。你用不同类别的样本(输入+对应的期望输出)作为训练,然后给出一个新的输入,BP网就能给你这个所属的类别。

下列代码为BP神经网络预测37-56周的销售量的代码:

% x为原始序列

load 销售量mat

data=C

x=data';

t=1:length(x);

lag=2; 

fn=length(t);

[f_out,iinput]=BP(x,lag,fn);

%预测年份或某一时间段

t1=fn:fn+20;

n=length(t1);

t1=length(x)+1:length(x)+n;

%预测步数为fn

fn=length(t1);     

[f_out,iinput]=BP(x,lag,fn);

P=vpa(f_out,5);

[t1' P']

% 画出预测图

figure(6),plot(t,x,'b-'),hold on

plot(t(end):t1(end),[iinput(end),f_out],'rp-'),grid on

xlabel('周数'),ylabel('销售量');

str=['BP神经网络预测',num2str(length(x)+1),'-',num2str(length(x)+20),'周的销售量'];

title(str)

str1=['1-',num2str(length(x)),'周的销售量'];

str2=[num2str(length(x)+1),'-',num2str(length(x)+20),'周的预测销售量'];

legend(str1,str2)

运行结果

BP神经网络通常不涉及卷积层和池化层。卷积神经网络(Convolutional Neural Network, CNN)是一种常用于图像处理和计算机视觉任务的深度学习模型,其中包含卷积层和池化层。

BP神经网络是一种前馈神经网络,它主要由输入层、隐藏层和输出层组成,每个神经元与相邻层的所有神经元相连。它通过反向传播算法进行训练,通过调整权重和偏置值来最小化损失函数。BP神经网络没有卷积和池化的概念,因此没有涉及卷积层到池化层的过程。

如果要使用卷积层和池化层进行图像处理任务,可以考虑使用卷积神经网络(CNN)模型,其中包含卷积层和池化层,以提取图像特征并实现空间维度的降采样。

人工神经网络(artificialneuralnetwork,ANN)指由大量与自然神经系统相类似的神经元联结而成的网络,是用工程技术手段模拟生物网络结构特征和功能特征的一类人工系统。神经网络不但具有处理数值数据的一般计算能力,而且还具有处理知识的思维、学习、记忆能力,它采用类似于“黑箱”的方法,通过学习和记忆,找出输入、输出变量之间的非线性关系(映射),在执行问题和求解时,将所获取的数据输入到已经训练好的网络,依据网络学到的知识进行网络推理,得出合理的答案与结果。

岩土工程中的许多问题是非线性问题,变量之间的关系十分复杂,很难用确切的数学、力学模型来描述。工程现场实测数据的代表性与测点的位置、范围和手段有关,有时很难满足传统统计方法所要求的统计条件和规律,加之岩土工程信息的复杂性和不确定性,因而运用神经网络方法实现岩土工程问题的求解是合适的。

BP神经网络模型是误差反向传播(BackPagation)网络模型的简称。它由输入层、隐含层和输出层组成。网络的学习过程就是对网络各层节点间连接权逐步修改的过程,这一过程由两部分组成:正向传播和反向传播。正向传播是输入模式从输入层经隐含层处理传向输出层;反向传播是均方误差信息从输出层向输入层传播,将误差信号沿原来的连接通路返回,通过修改各层神经元的权值,使得误差信号最小。

BP神经网络模型在建立及应用过程中,主要存在的不足和建议有以下四个方面:

(1)对于神经网络,数据愈多,网络的训练效果愈佳,也更能反映实际。但在实际 *** 作中,由于条件的限制很难选取大量的样本值进行训练,样本数量偏少。

(2)BP网络模型其计算速度较慢、无法表达预测量与其相关参数之间亲疏关系。

(3)以定量数据为基础建立模型,若能收集到充分资料,以定性指标(如基坑降水方式、基坑支护模式、施工工况等)和一些易获取的定量指标作为输入层,以评价等级作为输出层,这样建立的BP网络模型将更准确全面。

(4)BP人工神经网络系统具有非线性、智能的特点。较好地考虑了定性描述和定量计算、精确逻辑分析和非确定性推理等方面,但由于样本不同,影响要素的权重不同,以及在根据先验知识和前人的经验总结对定性参数进行量化处理,必然会影响评价的客观性和准确性。因此,在实际评价中只有根据不同的基坑施工工况、不同的周边环境条件,应不同用户的需求,选择不同的分析指标,才能满足复杂工况条件下地质环境评价的要求,取得较好的应用效果。

目前为止,我们已经学习了2个机器学习模型。线性回归一般用来处理线性问题,逻辑回归用来处理2分类问题。虽然逻辑回归也可以处理非线性的分类问题,但是当我们有非常多的特征时,例如大于100个变量,将会有数量非常惊人的特征组合。这对于一般的逻辑回归来说需要计算的特征太多了,负荷太大。而神经网络既可以解决复杂的非线性分类问题,又可以避免庞大的计算量。

人工神经网络是由很多神经元(激活单元)构成的,神经元是神经网络的基本元素。

实际上,可以这样理解神经元工作过程,当将输入送进神经元后,神经元将输入与权值线性组合(实际上就是θ T X)输出一个线性表达式,再将这个表达式送入激活函数中,便得到了神经元的真实输出。

神经网络由好多个激活单元构成,如下图所示:

激活函数的选择是构建神经网络过程中的重要环节,下面简要介绍常用的激活函数。

(1) 线性函数( Liner Function )

(2) 斜面函数( Ramp Function )

(3) 阈值函数( Threshold Function )

以上3个激活函数都属于线性函数,下面介绍两个常用的非线性激活函数。

(4) S形函数( Sigmoid Function )

 S形函数与双极S形函数的图像如下:

双极S形函数与S形函数主要区别在于函数的值域,双极S形函数值域是(-1,1),而S形函数值域是(0,1)。由于S形函数与双极S形函数都是 可导的 (导函数是连续函数),因此适合用在BP神经网络中。(BP算法要求激活函数可导)

人工神经网络中,最常用的激活函数就是sigmoid函数

神经网络是由大量的神经元互联而构成的网络。根据网络中神经元的互联方式,常见网络结构主要可以分为下面3类:

前馈网络也称前向网络,是最常见的神经网络,前文提到的都是前馈网络。称之为前馈是因为它在输出和模型本身之间没有反馈,数据只能向前传送,直到到达输出层,层间没有向后的反馈信号。

反馈型神经网络是一种从输出到输入具有反馈连接的神经网络,其结构比前馈网络要复杂得多。

自组织神经网络是一种无监督学习网络。它通过自动寻找样本中的内在规律和本质属性,自组织、自适应地改变网络参数与结构。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/12179191.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-21
下一篇 2023-05-21

发表评论

登录后才能评论

评论列表(0条)

保存