1、IP地址和子网掩码均化为二进制后做逻辑与运算,可得网络地址,主机位置为全1则可得广播地址,网络地址与广播地址之间的地址就是IP范围。
2、如:ip地址200200200111 子网掩码255255255252 ,网络地址是200200200108,广播地址是200200200111,IP范围就是200200200108到200200200111之间的所有地址。
3、第二个177177177177子网掩码2552552480,网络地址是1771771760,广播地址是177177183255,IP地址范围就是1771771760到177177183255之间的所有地址。
扩展资料:
在一个局域网中,有两个IP地址比较特殊,一个是网络号,一个是广播地址。网络号是用于三层寻址的地址,它代表了整个网络本身。
另一个是广播地址,它代表了网络全部的主机。网络号是网段中的第一个地址,广播地址是网段中的最后一个地址,这两个地址是不能配置在计算机主机上的。
例如在19216800这样的网段中,网络号是19216800,广播地址是1921680255。因此,在一个局域网中,能配置在计算机中的地址比网段内的地址要少两个,这些地址称之为主机地址。在上面的例子中,主机地址就只有19216801至1921680254可以配置在计算机上了。
我们要理解网络中进程如何通信,得解决两个问题:
a、我们要如何标识一台主机,即怎样确定我们将要通信的进程是在那一台主机上运行。
b、我们要如何标识唯一进程,本地通过pid标识,网络中应该怎样标识?
解决办法:
a、TCP/IP协议族已经帮我们解决了这个问题,网络层的“ip地址”可以唯一标识网络中的主机
b、传输层的“协议+端口”可以唯一标识主机中的应用程序(进程),因此,我们利用三元组(ip地址,协议,端口)就可以标识网络的进程了,网络中的进程通信就可以利用这个标志与其它进程进行交互
以UDP传输为例:
1、物理层:
解决两个硬件之间怎么通信的问题,常见的物理媒介有光纤、电缆、中继器等。它主要定义物理设备标准,如网线的接口类型、光纤的接口类型、各种传输介质的传输速率等。
它的主要作用是传输比特流(就是由1、0转化为电流强弱来进行传输,到达目的地后在转化为1、0,也就是我们常说的数模转换与模数转换)。这一层的数据叫做比特。
2、数据链路层:
在计算机网络中由于各种干扰的存在,物理链路是不可靠的。该层的主要功能就是:通过各种控制协议,将有差错的物理信道变为无差错的、能可靠传输数据帧的数据链路。
它的具体工作是接收来自物理层的位流形式的数据,并封装成帧,传送到上一层;同样,也将来自上层的数据帧,拆装为位流形式的数据转发到物理层。这一层的数据叫做帧。
3、网络层:
计算机网络中如果有多台计算机,怎么找到要发的那台?如果中间有多个节点,怎么选择路径?这就是路由要做的事。
该层的主要任务就是:通过路由选择算法,为报文(该层的数据单位,由上一层数据打包而来)通过通信子网选择最适当的路径。这一层定义的是IP地址,通过IP地址寻址,所以产生了IP协议。
4、传输层:
当发送大量数据时,很可能会出现丢包的情况,另一台电脑要告诉是否完整接收到全部的包。如果缺了,就告诉丢了哪些包,然后再发一次,直至全部接收为止。
简单来说,传输层的主要功能就是:监控数据传输服务的质量,保证报文的正确传输。
5、会话层:
虽然已经可以实现给正确的计算机,发送正确的封装过后的信息了。但我们总不可能每次都要调用传输层协议去打包,然后再调用IP协议去找路由,所以我们要建立一个自动收发包,自动寻址的功能。于是会话层出现了:它的作用就是建立和管理应用程序之间的通信。
6、表示层:
表示层负责数据格式的转换,将应用处理的信息转换为适合网络传输的格式,或者将来自下一层的数据转换为上层能处理的格式。
7、应用层:
应用层是计算机用户,以及各种应用程序和网络之间的接口,其功能是直接向用户提供服务,完成用户希望在网络上完成的各种工作。前端同学对应用层肯定是最熟悉的。
应用层(应用,表示,会话):TFTP,HTTP,SNMP,FTP,SMTP,DNS,Telnet 等等
传输层:TCP,UDP
网络层:IP,ICMP,OSPF,EIGRP,IGMP
数据链路层:SLIP,CSLIP,PPP,MTU
重要的 协议族介绍:
IP 定义了 TCP/IP 的地址,寻址方法,以及路由规则。现在广泛使用的 IP 协议有 IPv4 和 IPv6 两种:IPv4 使用 32 位二进制整数做地址,一般使用点分十进制方式表示,比如 19216801。
IP 地址由两部分组成,即网络号和主机号。故一个完整的 IPv4 地址往往表示 为 19216801/24 或19216801/2552552550 这种形式。
IPv6 是为了解决 IPv4 地址耗尽和其它一些问题而研发的最新版本的 IP。使用 128 位 整数表示地址,通常使用冒号分隔的十六进制来表示,并且可以省略其中一串连续的 0,如:fe80::200:1ff:fe00:1。
目前使用并不多!
http协议对应于应用层,tcp协议对应于传输层,ip协议对应于网络层。
TPC/IPTCP(传输控制协议)和IP(网际协议),主要解决数据如何在网络中传输,而HTTP是应用层协议,主要解决如何包装数据。关于TCP/IP和HTTP协议的关系,网络有一段比较容易理解的介绍:“我们在传输数据时,可以只使用(传输层)TCP/IP协议,但是那样的话,如果没有应用层,便无法识别数据内容,如果想要使传输的数据有意义,则必须使用到应用层协议,应用层协议有很多,比如HTTP、FTP、TELNET等,也可以自己定义应用层协议。WEB使用HTTP协议作应用层协议,以封装HTTP 文本信息,然后使用TCP/IP做传输层协议将它发到网络上。”
术语TCP/IP代表传输控制协议/网际协议,指的是一系列协议。“IP”代表网际协议,TCP和UDP使用该协议从一个网络传送数据包到另一个网络。把IP想像成一种高速公路,它允许其它协议在上面行驶并找到到其它电脑的出口。TCP和UDP是高速公路上的“卡车”,它们携带的货物就是像HTTP,文件传输协议FTP这样的协议等。
你应该能理解,TCP和UDP是FTP,HTTP和SMTP之类使用的传输层协议。虽然TCP和UDP都是用来传输其他协议的,它们却有一个显著的不同:TCP提供有保证的数据传输,而UDP不提供。这意味着TCP有一个特殊的机制来确保数据安全的不出错的从一个端点传到另一个端点,而UDP不提供任何这样的保证。
URL的全称是Uniform Resource Locator(统一资源定位符)
通过1个URL,能找到互联网上唯一的1个资源。
URL就是资源的地址、位置,互联网上的每个资源都有一个唯一的URL。
URL的基本格式 =协议://主机地址/路径
协议:不同的协议,代表着不同的资源查找方式、资源传输方式
主机地址:存放资源的主机(服务器)的IP地址(域名)
资源在主机(服务器)中的具体位置
1、HTTP协议的几个重要概念
1连接(Connection):一个传输层的实际环流,它是建立在两个相互通讯的应用程序之间。
2消息(Message):HTTP通讯的基本单位,包括一个结构化的八元组序列并通过连接传输。
3请求(Request):一个从客户端到服务器的请求信息包括应用于资源的方法、资源的标识符和协议的版本号
4响应(Response):一个从服务器返回的信息包括HTTP协议的版本号、请求的状态(例如“成功”或“没找到”)和文档的MIME类型。
5资源(Resource):由URI标识的网络数据对象或服务。
6实体(Entity):数据资源或来自服务资源的回映的一种特殊表示方法,它可能被包围在一个请求或响应信息中。一个实体包括实体头信息和实体的本身内容。
7客户机(Client):一个为发送请求目的而建立连接的应用程序。
8用户代理(Useragent):初始化一个请求的客户机。它们是浏览器、编辑器或其它用户工具。
9服务器(Server):一个接受连接并对请求返回信息的应用程序。
10源服务器(Originserver):是一个给定资源可以在其上驻留或被创建的服务器。
11代理(Proxy):一个中间程序,它可以充当一个服务器,也可以充当一个客户机,为其它客户机建立请求。请求是通过可能的翻译在内部或经过传递到其它的服务器中。一个代理在发送请求信息之前,必须解释并且如果可能重写它。
代理经常作为通过防火墙的客户机端的门户,代理还可以作为一个帮助应用来通过协议处理没有被用户代理完成的请求。
12网关(Gateway):一个作为其它服务器中间媒介的服务器。与代理不同的是,网关接受请求就好象对被请求的资源来说它就是源服务器;发出请求的客户机并没有意识到它在同网关打交道。
网关经常作为通过防火墙的服务器端的门户,网关还可以作为一个协议翻译器以便存取那些存储在非HTTP系统中的资源。
13通道(Tunnel):是作为两个连接中继的中介程序。一旦激活,通道便被认为不属于HTTP通讯,尽管通道可能是被一个HTTP请求初始化的。当被中继的连接两端关闭时,通道便消失。当一个门户(Portal)必须存在或中介(Intermediary)不能解释中继的通讯时通道被经常使用。
14缓存(Cache):反应信息的局域存储。
TCP(Transmission Control Protocol) 传输控制协议。TCP是主机对主机层的传输控制协议,提供可靠的连接服务,采用三次握确认建立一个连接。位码即tcp标志位,有6种 标示:SYN(synchronous建立联机) ACK(acknowledgement 确认) PSH(push传送) FIN(finish结束) RST(reset重置) URG(urgent紧急)Sequence number(顺序号码) Acknowledge number(确认号码)。
手机能够使用联网功能是因为手机底层实现了TCP/IP协议,可以使手机终端通过无线网络建立TCP连接。TCP协议可以对上层网络提供接口,使上层网络数据的传输建立在“无差别”的网络之上。建立起一个TCP连接需要经过“三次握手”:
第一次握手:客户端发送syn包(syn=j)到服务器,并进入SYN_SEND状态,等待服务器确认;
第二次握手:服务器收到syn包,必须确认客户的SYN(ack=j+1),同时自己也发送一个SYN包(syn=k),即SYN+ACK包,此时服务器进入SYN_RECV状态;
第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=k+1),此包发送完毕,客户端和服务器进入ESTABLISHED状态,完成三次握手。握手完成后,两台主机开始传输数据了。
为什么要三次握手?
如果只有一次握手,Client不能确定与Server的单向连接,更加不能确定Server与Client的单向连接;
如果只有两次握手,Client确定与Server的单向连接,但是Server不能确定与Client的单向连接;
只有三次握手,Client与Server才能相互确认双向连接,实现双工数据传输。
握手过程中传送的包里不包含数据,三次握手完毕后,客户端与服务器才正式开始传送数据。理想状态下,TCP连接一旦建立,在通信双方中的任何一方主动关闭连接之前,TCP 连接都将被一直保持下去。断开连接时服务器和客户端均可以主动发起断开TCP连接的请求,断开过程需要经过“四次挥手”。
第一次挥手:
Client发送一个FIN,用来关闭Client到Server的数据传送,Client进入FIN_WAIT_1状态。
第二次挥手:
Server收到FIN后,发送一个ACK给Client,确认序号为收到序号+1(与SYN相同,一个FIN占用一个序号),Server进入CLOSE_WAIT状态。
第三次挥手:
Server发送一个FIN,用来关闭Server到Client的数据传送,Server进入LAST_ACK状态。
第四次挥手:
Client收到FIN后,Client进入TIME_WAIT状态,接着发送一个ACK给Server,确认序号为收到序号+1,Server进入CLOSED状态,完成四次挥手。
为什么要四次挥手?
“三次握手”的第二次握手发送SYN+ACK回应第一次握手的SYN,但是“四次挥手”的第二次挥手只能发送ACK回应第一次挥手的FIN,因为此时Server可能还有数据传输给Client,所以Server传输数据完成后才能发起第三次挥手发送FIN给Client,等待Client的第四次挥手ACK。
http是超文本传输协议,信息是明文传输,https 则是具有安全性的ssl加密传输协议。HTTPS其实是有两部分组成:HTTP +SSL/ TLS,也就是在HTTP上又加了一层处理加密信息的模块。采用HTTPS协议的服务器必须要有一套数字证书,可以自己制作,也可以向组织申请。区别就是自己颁发的证书需要客户端验证通过,才可以继续访问,而使用受信任的公司申请的证书则不会d出提示页面(startssl就是个不错的选择,有1年的免费服务)。这套证书其实就是一对公钥和私钥。SSL介于应用层和TCP层之间。应用层数据不再直接传递给传输层,而是传递给SSL层,SSL层对从应用层收到的数据进行加密,并增加自己的SSL头。
1怎么解决tcp拆包和黏包的问题
粘包、拆包发生原因
发生TCP粘包或拆包有很多原因,现列出常见的几点,可能不全面,欢迎补充,
1、要发送的数据大于TCP发送缓冲区剩余空间大小,将会发生拆包。
2、待发送数据大于MSS(最大报文长度),TCP在传输前将进行拆包。
3、要发送的数据小于TCP发送缓冲区的大小,TCP将多次写入缓冲区的数据一次发送出去,将会发生粘包。
4、接收数据端的应用层没有及时读取接收缓冲区中的数据,将发生粘包。
等等。
粘包、拆包解决办法
解决问题的关键在于如何给每个数据包添加边界信息,常用的方法有如下几个:
1、发送端给每个数据包添加包首部,首部中应该至少包含数据包的长度,这样接收端在接收到数据后,通过读取包首部的长度字段,便知道每一个数据包的实际长度了。
2、发送端将每个数据包封装为固定长度(不够的可以通过补0填充),这样接收端每次从接收缓冲区中读取固定长度的数据就自然而然的把每个数据包拆分开来。
3、可以在数据包之间设置边界,如添加特殊符号,这样,接收端通过这个边界就可以将不同的数据包拆分开。
等等。
2upd丢包
1、接收端处理时间过长导致丢包:调用recv方法接收端收到数据后,处理数据花了一些时间,处理完后再次调用recv方法,在这二次调用间隔里,发过来的包可能丢失。对于这种情况可以修改接收端,将包接收后存入一个缓冲区,然后迅速返回继续recv。
2、发送的包巨大丢包:虽然send方法会帮你做大包切割成小包发送的事情,但包太大也不行。例如超过50K的一个udp包,不切割直接通过send方法发送也会导致这个包丢失。这种情况需要切割成小包再逐个send。
3、发送的包较大,超过接受者缓存导致丢包:包超过mtu size数倍,几个大的udp包可能会超过接收者的缓冲,导致丢包。这种情况可以设置socket接收缓冲。以前遇到过这种问题,我把接收缓冲设置成64K就解决了。
int nRecvBuf=321024;//设置为32K
setsockopt(s,SOL_SOCKET,SO_RCVBUF,(const char)&nRecvBuf,sizeof(int));
4、发送的包频率太快:虽然每个包的大小都小于mtu size 但是频率太快,例如40多个mut size的包连续发送中间不sleep,也有可能导致丢包。这种情况也有时可以通过设置socket接收缓冲解决,但有时解决不了。所以在发送频率过快的时候还是考虑sleep一下吧。
5、局域网内不丢包,公网上丢包。这个问题我也是通过切割小包并sleep发送解决的。如果流量太大,这个办法也不灵了。总之udp丢包总是会有的,如果出现了用我的方法解决不了,还有这个几个方法: 要么减小流量,要么换tcp协议传输,要么做丢包重传的工作。
一个是客户端发送过快,网络状况不好或者超过服务器接收速度,就会丢包。
第二个原因是服务器收到包后,还要进行一些处理,而这段时间客户端发送的包没有去收,造成丢包。
那么需要做的是
客户端降低发送速度,可以等待回包,或者加一些延迟。服务器部分单独开一个线程,去接收UDP数据,存放在一个缓冲区中,又另外的线程去处理收到的数据,尽量减少因为处理数据延时造成的丢包。
有两种方法解决UDP 丢包的问题:
方法一:重新设计一下协议,增加接收确认超时重发。(推荐)
方法二:在接收方,将通信和处理分开,增加个应用缓冲区;如果有需要增加接收socket的系统缓冲区。(本方法不能从根本解决问题,只能改善)
https://baijiahaobaiducom/sid=1654225744653405133&wfr=spider&for=pc
https://wwwjianshucom/p/066d99da7cbd
https://baijiahaobaiducom/sid=1654225744653405133&wfr=spider&for=pc
https://blogcsdnnet/qq_31337311/article/details/80781273
https://wwwcnblogscom/jiangzhaowei/p/8996810html
http://blogsinacomcn/s/blog_d2bb5eff0102wbq2html
一、指代不同
1、路由器:是连接两个或多个网络的硬件设备,在网络间起网关的作用,是读取每一个数据包中的地址然后决定如何传送的专用智能性的网络设备。
2、交换机:是一种用于电(光)信号转发的网络设备。
二、功能不同
1、路由器:最主要的功能可以理解为实现信息的转送。把这个过程称之为寻址过程。因为在路由器处在不同网络之间,但并不一定是信息的最终接收地址。所以在路由器中, 通常存在着一张路由表。
2、交换机:交换机有带宽很高的内部交换矩阵和背部总线,并且这个背部总线上挂接了所有的端口,通过内部交换矩阵,就能够把数据包直接而迅速地传送到目的节点而非所有节点, 这样就不会浪费网络资源,从而产生非常高的效率。
三、特点不同
1、路由器:核心是背板,高效率的背板有助于提高路由器的性能。由于传统的共享总线式背板无法满足路由器的需要,所以采用结构可以用不同技术实现的交换式背板。
2、交换机:交换机在同一时刻可进行多个端口对之间的数据传输。每一端口都可视为独立的物理网段(注:非IP网段),连接在其上的网络设备独自享有全部的带宽,无须同其他设备竞争使用。
-交换机
-路由器
路由(routing)是指分组从源到目的地时,决定端到端路径的网络范围的进程。路由工作在OSI参考模型第三层——网络层的数据包转发设备。路由器通过转发数据包来实现网络互连。虽然路由器可以支持多种协议(如TCP/IP、IPX/SPX、AppleTalk等协议),但是在我国绝大多数路由器运行TCP/IP协议。路由器通常连接两个或多个由IP子网或点到点协议标识的逻辑端口,至少拥有1个物理端口。路由器根据收到数据包中的网络层地址以及路由器内部维护的路由表决定输出端口以及下一跳地址,并且重写链路层数据包头实现转发数据包。路由器通过动态维护路由表来反映当前的网络拓扑,并通过网络上其他路由器交换路由和链路信息来维护路由表。
寻址是数据恢复技术的基础,是定位数据和扇区的关键。寻址这个概念比较抽象,简单的说是磁头在盘片上定位数据的一个过程。如果想找到计算机中的一个文件,可能会在Windows中先打开我的电脑、分区、文件夹,再打开你要找的文件。这是表面的寻找文件的过程,而磁头在盘片的寻找过程就是寻址。 因为当数据出现丢失的情况后,在我的电脑、分区、文件夹下就找不到这个文件了,甚至找不到文件夹和分区。
41、网络层概述
简介
网络层的主要任务是 实现网络互连 ,进而 实现数据包在各网络之间的传输
这些异构型网络N1~N7如果只是需要各自内部通信,他们只要实现各自的物理层和数据链路层即可
但是如果要将这些异构型网络互连起来,形成一个更大的互联网,就需要实现网络层设备路由器
有时为了简单起见,可以不用画出这些网络,图中N1~N7,而将他们看做是一条链路即可
要实现网络层任务,需要解决一下主要问题:
网络层向运输层提供怎样的服务(“可靠传输”还是“不可靠传输”)
在数据链路层那课讲过的可靠传输,详情可以看那边的笔记:网络层对以下的 分组丢失 、 分组失序 、 分组重复 的传输错误采取措施,使得接收方能正确接受发送方发送的数据,就是 可靠传输 ,反之,如果什么措施也不采取,则是 不可靠传输
网络层寻址问题
路由选择问题
路由器收到数据后,是依据什么来决定将数据包从自己的哪个接口转发出去?
依据数据包的目的地址和路由器中的路由表
但在实际当中,路由器是怎样知道这些路由记录?
由用户或网络管理员进行人工配置,这种方法只适用于规模较小且网络拓扑不改变的小型互联网
另一种是实现各种路由选择协议,由路由器执行路由选择协议中所规定的路由选择算法,而自动得出路由表中的路有记录,这种方法更适合规模较大且网络拓扑经常改变的大型互联网
补充 网络层(网际层) 除了 IP协议 外,还有之前介绍过的 地址解析协议ARP ,还有 网际控制报文协议ICMP , 网际组管理协议IGMP
总结
42、网络层提供的两种服务
在计算机网络领域,网络层应该向运输层提供怎样的服务(“ 面向连接 ”还是“ 无连接 ”)曾引起了长期的争论。
争论焦点的实质就是: 在计算机通信中,可靠交付应当由谁来负责 ?是 网络 还是 端系统 ?
面向连接的虚电路服务
一种观点:让网络负责可靠交付
这种观点认为,应借助于电信网的成功经验,让网络负责可靠交付,计算机网络应模仿电信网络,使用 面向连接 的通信方式。
通信之前先建立 虚电路 (Virtual Circuit),以保证双方通信所需的一切网络资源。
如果再使用可靠传输的网络协议,就可使所发送的分组无差错按序到达终点,不丢失、不重复。
发送方 发送给 接收方 的所有分组都沿着同一条虚电路传送
虚电路表示这只是一条逻辑上的连接,分组都沿着这条逻辑连接按照存储转发方式传送,而并不是真正建立了一条物理连接。
请注意,电路交换的电话通信是先建立了一条真正的连接。
因此分组交换的虚连接和电路交换的连接只是类似,但并不完全一样
无连接的数据报服务
另一种观点:网络提供数据报服务
互联网的先驱者提出了一种崭新的网络设计思路。
网络层向上只提供简单灵活的、 无连接的 、 尽最大努力交付 的 数据报服务 。
网络在发送分组时不需要先建立连接。每一个分组(即 IP 数据报)独立发送,与其前后的分组无关(不进行编号)。
网络层不提供服务质量的承诺 。即所传送的分组可能出错、丢失、重复和失序(不按序到达终点),当然也不保证分组传送的时限。
发送方 发送给 接收方 的分组可能沿着不同路径传送
尽最大努力交付
如果主机(即端系统)中的进程之间的通信需要是可靠的,那么就由网络的 主机中的运输层负责可靠交付(包括差错处理、流量控制等) 。
采用这种设计思路的好处是 :网络的造价大大降低,运行方式灵活,能够适应多种应用。
互连网能够发展到今日的规模,充分证明了当初采用这种设计思路的正确性。
虚电路服务与数据报服务的对比
对比的方面 虚电路服务 数据报服务
思路 可靠通信应当由网络来保证 可靠通信应当由用户主机来保证
连接的建立 必须有 不需要
终点地址 仅在连接建立阶段使用,每个分组使用短的虚电路号 每个分组都有终点的完整地址
分组的转发 属于同一条虚电路的分组均按照同一路由进行转发 每个分组独立选择路由进行转发
当结点出故障时 所有通过出故障的结点的虚电路均不能工作 出故障的结点可能会丢失分组,一些路由可能会发生变化
分组的顺序 总是按发送顺序到达终点 到达终点时不一定按发送顺序
端到端的差错处理和流量控制 可以由网络负责,也可以由用户主机负责 由用户主机负责
43、IPv4
概述
分类编制的IPv4地址
简介
每一类地址都由两个固定长度的字段组成,其中一个字段是 网络号 net-id ,它标志主机(或路由器)所连接到的网络,而另一个字段则是 主机号 host-id ,它标志该主机(或路由器)。
主机号在它前面的网络号所指明的网络范围内必须是唯一的。
由此可见, 一个 IP 地址在整个互联网范围内是唯一的 。
A类地址
B类地址
C类地址
练习
总结
IP 地址的指派范围
一般不使用的特殊的 IP 地址
IP 地址的一些重要特点
(1) IP 地址是一种分等级的地址结构 。分两个等级的好处是:
第一 ,IP 地址管理机构在分配 IP 地址时只分配网络号,而剩下的主机号则由得到该网络号的单位自行分配。这样就方便了 IP 地址的管理。
第二 ,路由器仅根据目的主机所连接的网络号来转发分组(而不考虑目的主机号),这样就可以使路由表中的项目数大幅度减少,从而减小了路由表所占的存储空间。
(2) 实际上 IP 地址是标志一个主机(或路由器)和一条链路的接口 。
当一个主机同时连接到两个网络上时,该主机就必须同时具有两个相应的 IP 地址,其网络号 net-id 必须是不同的。这种主机称为 多归属主机 (multihomed host)。
由于一个路由器至少应当连接到两个网络(这样它才能将 IP 数据报从一个网络转发到另一个网络),因此 一个路由器至少应当有两个不同的 IP 地址 。
(3) 用转发器或网桥连接起来的若干个局域网仍为一个网络 ,因此这些局域网都具有同样的网络号 net-id。
(4) 所有分配到网络号 net-id 的网络,无论是范围很小的局域网,还是可能覆盖很大地理范围的广域网,都是平等的。
划分子网的IPv4地址
为什么要划分子网
在 ARPANET 的早期,IP 地址的设计确实不够合理:
IP 地址空间的利用率有时很低。
给每一个物理网络分配一个网络号会使路由表变得太大因而使网络性能变坏。
两级的 IP 地址不够灵活。
如果想要将原来的网络划分成三个独立的网路
所以是否可以从主机号部分借用一部分作为子网号
但是如果未在图中标记子网号部分,那么我们和计算机又如何知道分类地址中主机号有多少比特被用作子网号了呢?
所以就有了划分子网的工具: 子网掩码
从 1985 年起在 IP 地址中又增加了一个“ 子网号字段 ”,使两级的 IP 地址变成为 三级的 IP 地址 。
这种做法叫做 划分子网 (subnetting) 。
划分子网已成为互联网的正式标准协议。
如何划分子网
基本思路
划分子网纯属一个 单位内部的事情 。单位对外仍然表现为没有划分子网的网络。
从主机号 借用 若干个位作为 子网号 subnet-id,而主机号 host-id 也就相应减少了若干个位。
凡是从其他网络发送给本单位某个主机的 IP 数据报,仍然是根据 IP 数据报的 目的网络号 net-id,先找到连接在本单位网络上的路由器。
然后 此路由器 在收到 IP 数据报后,再按 目的网络号 net-id 和 子网号 subnet-id 找到目的子网。
最后就将 IP 数据报直接交付目的主机。
划分为三个子网后对外仍是一个网络
优点
1 减少了 IP 地址的浪费 2 使网络的组织更加灵活 3 更便于维护和管理
划分子网纯属一个单位内部的事情,对外部网络透明 ,对外仍然表现为没有划分子网的一个网络。
子网掩码
(IP 地址) AND (子网掩码) = 网络地址 重要,下面很多相关知识都会用到
举例
例子1
例子2
默认子网掩码
总结
子网掩码是一个网络或一个子网的重要属性。
路由器在和相邻路由器交换路由信息时,必须把自己所在网络(或子网)的子网掩码告诉相邻路由器。
路由器的路由表中的每一个项目,除了要给出目的网络地址外,还必须同时给出该网络的子网掩码。
若一个路由器连接在两个子网上,就拥有两个网络地址和两个子网掩码。
无分类编址的IPv4地址
为什么使用无分类编址
无分类域间路由选择 CIDR (Classless Inter-Domain Routing)。
CIDR 最主要的特点
CIDR使用各种长度的“ 网络前缀 ”(network-prefix)来代替分类地址中的网络号和子网号。
IP 地址从三级编址(使用子网掩码)又回到了两级编址 。
如何使用无分类编址
举例
路由聚合(构造超网)
总结
IPv4地址的应用规划
给定一个IPv4地址快,如何将其划分成几个更小的地址块,并将这些地址块分配给互联网中不同网络,进而可以给各网络中的主机和路由器接口分配IPv4地址
定长的子网掩码FLSM(Fixed Length Subnet Mask)
划分子网的IPv4就是定长的子网掩码
举例
通过上面步骤分析,就可以从子网1 ~ 8中任选5个分配给左图中的N1 ~ N5
采用定长的子网掩码划分,只能划分出2^n个子网,其中n是从主机号部分借用的用来作为子网号的比特数量,每个子网所分配的IP地址数量相同
但是也因为每个子网所分配的IP地址数量相同,不够灵活,容易造成IP地址的浪费
变长的子网掩码VLSM(Variable Length Subnet Mask)
无分类编址的IPv4就是变长的子网掩码
举例
44、IP数据报的发送和转发过程
举例
源主机如何知道目的主机是否与自己在同一个网络中,是直接交付,还是间接交付?
可以通过 目的地址IP 和 源地址的子网掩码 进行 逻辑与运算 得到 目的网络地址
如果 目的网络地址 和 源网络地址 相同 ,就是 在同一个网络 中,属于 直接交付
如果 目的网络地址 和 源网络地址 不相同 ,就 不在同一个网络 中,属于 间接交付 ,传输给主机所在网络的 默认网关 (路由器——下图会讲解),由默认网关帮忙转发
主机C如何知道路由器R的存在?
用户为了让本网络中的主机能和其他网络中的主机进行通信,就必须给其指定本网络的一个路由器的接口,由该路由器帮忙进行转发,所指定的路由器,也被称为 默认网关
例如。路由器的接口0的IP地址1921680128做为左边网络的默认网关
主机A会将该IP数据报传输给自己的默认网关,也就是图中所示的路由器接口0
路由器收到IP数据报后如何转发?
检查IP数据报首部是否出错:
若出错,则直接丢弃该IP数据报并通告源主机
若没有出错,则进行转发
根据IP数据报的目的地址在路由表中查找匹配的条目:
若找到匹配的条目,则转发给条目中指示的吓一跳
若找不到,则丢弃该数据报并通告源主机
假设IP数据报首部没有出错,路由器取出IP数据报首部各地址字段的值
接下来路由器对该IP数据报进行查表转发
逐条检查路由条目,将目的地址与路由条目中的地址掩码进行逻辑与运算得到目的网络地址,然后与路由条目中的目的网络进行比较,如果相同,则这条路由条目就是匹配的路由条目,按照它的下一条指示,图中所示的也就是接口1转发该IP数据报
路由器是隔离广播域的
45、静态路由配置及其可能产生的路由环路问题
概念
多种情况举例
静态路由配置
举例
默认路由
举例
默认路由可以被所有网络匹配,但路由匹配有优先级,默认路由是优先级最低的
特定主机路由
举例
有时候,我们可以给路由器添加针对某个主机的特定主机路由条目
一般用于网络管理人员对网络的管理和测试
多条路由可选,匹配路由最具体的
静态路由配置错误导致路由环路
举例
假设将R2的路由表中第三条目录配置错了下一跳
这导致R2和R3之间产生了路由环路
聚合了不存在的网络而导致路由环路
举例
正常情况
错误情况
解决方法
黑洞路由的下一跳为null0,这是路由器内部的虚拟接口,IP数据报进入它后就被丢弃
网络故障而导致路由环路
举例
解决方法
添加故障的网络为黑洞路由
假设。一段时间后故障网络恢复了
R1又自动地得出了其接口0的直连网络的路由条目
针对该网络的黑洞网络会自动失效
如果又故障
则生效该网络的黑洞网络
总结
46、路由选择协议
概述
因特网所采用的路由选择协议的主要特点
因特网采用分层次的路由选择协议
自治系统 AS :在单一的技术管理下的一组路由器,而这些路由器使用一种 AS 内部的路由选择协议和共同的度量以确定分组在该 AS 内的路由,同时还使用一种 AS 之间的路由选择协议用以确定分组在 AS之间的路由。
自治系统之间的路由选择简称为域间路由选择,自治系统内部的路由选择简称为域内路由选择
域间路由选择使用外部网关协议EGP这个类别的路由选择协议
域内路由选择使用内部网关协议IGP这个类别的路由选择协议
网关协议 的名称可称为 路由协议
常见的路由选择协议
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)