- 1、选择“File” -->“New”–>“Project”
- 2、选择 Maven,设置JDK版本,选择maven项目的模板
org.apache.maven.archetypes:maven-archetype-quickstart #代表普通的maven项目面板
- 3、设置Groupid和Artifactid
Groupid:公司名称 Artifactid:项目模块
- 4、检查Maven环境,选择”Next“
主要选择maven路径和settings路径
- 5、检查项目名和工作空间,选择finish
- 6、等待项目创建,下载资源,创建完成后目录结构如下
2、Flink开发流程 2.1、获取执行环境 2.1.1、批处理环境获取4.0.0 com.hainiu hainiuflink1.0 1.8 2.11 1.9.3 1.10.0 2.7.3 1.2.72 2.9.0 5.1.35 1.2.17 1.7.7 1.8 1.8 1.8 UTF-8 compile com.hainiu.Driver org.slf4j slf4j-log4j12${slf4j.version} ${project.build.scope} log4j log4j${log4j.version} ${project.build.scope} org.apache.hadoop hadoop-client${hadoop.version} ${project.build.scope} org.apache.flink flink-hadoop-compatibility_${scala.version}${flink.version} ${project.build.scope} org.apache.flink flink-java${flink.version} ${project.build.scope} org.apache.flink flink-streaming-java_${scala.version}${flink.version} ${project.build.scope} org.apache.flink flink-scala_${scala.version}${flink.version} ${project.build.scope} org.apache.flink flink-streaming-scala_${scala.version}${flink.version} ${project.build.scope} org.apache.flink flink-runtime-web_${scala.version}${flink.version} ${project.build.scope} org.apache.flink flink-statebackend-rocksdb_${scala.version}${flink.version} ${project.build.scope} org.apache.flink flink-hbase_${scala.version}${flink.version} ${project.build.scope} org.apache.flink flink-connector-elasticsearch5_${scala.version}${flink.version} ${project.build.scope} org.apache.flink flink-connector-kafka-0.10_${scala.version}${flink.version} ${project.build.scope} org.apache.flink flink-connector-filesystem_${scala.version}${flink.version} ${project.build.scope} mysql mysql-connector-java${mysql.version} ${project.build.scope} redis.clients jedis${redis.version} ${project.build.scope} org.apache.parquet parquet-avro${parquet.version} ${project.build.scope} org.apache.parquet parquet-hadoop${parquet.version} ${project.build.scope} org.apache.flink flink-parquet_${scala.version}${flink.version} ${project.build.scope} com.alibaba fastjson${fastjson.version} ${project.build.scope} src/main/resources org.apache.maven.plugins maven-assembly-pluginsrc/assembly/assembly.xml ${mainClass} make-assembly package single org.apache.maven.plugins maven-surefire-plugin2.12 true once **/** org.apache.maven.plugins maven-compiler-plugin3.1 ${java.version} ${java.version} ${project.build.sourceEncoding}
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();2.1.2、流处理环境获取
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();2.1.3、自动模式
- Flink.12开始,流批一体,自动获取模式 - AUTOMATIC()
env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);2.2、创建/加载数据源 2.1.2、从本地文件加载数据源 - 批处理
String path = "H:\flink_demo\flink_test\src\main\resources\wordcount.txt"; DataSet2.1.2、从scoket中读取数据 - 流处理inputDataSet = env.readTextFile(path);
DataStreamSourceelementsSource= env.socketTextStream("10.50.40.131", 9999);
- scoket:
DataStream2.3、数据转换处理lines = env.readTextFile("file:///path");
- 对数据加工转换:扁平化 + 分组 + 聚合
DataSet2.4、数据输出/存储> resultDataSet = inputDataSet.flatMap(new MyFlatMapFunction()) .groupBy(0) // (word, 1) -> 0 表示 word .sum(1);
- 输出位置:输出到文件,输出到控制台,输出到MQ,输出到DB,输出到scoket…
//print()它会对流中的每个元素都调用 toString() 方法。 resultDataSet.print();2.5、计算模型
- 获取执行环境(execution environment)
- 加载/创建初始数据集
- 对数据集进行各种转换 *** 作(生成新的数据集)
- 指定将计算的结果放到何处去
- 触发APP执行
import org.apache.flink.api.common.functions.FlatMapFunction; import org.apache.flink.api.java.DataSet; import org.apache.flink.api.java.ExecutionEnvironment; import org.apache.flink.api.java.tuple.Tuple2; import org.apache.flink.util.Collector; public class WordCount { public static void main(String[] args) throws Exception { // 1、创建执行环境 ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); // 2、读取数据 String path = "H:\flink_demo\flink_test\src\main\resources\wordcount.txt"; // DataSet -> Operator -> DataSource DataSetinputDataSet = env.readTextFile(path); // 3、扁平化 + 分组 + sum DataSet > resultDataSet = inputDataSet.flatMap(new MyFlatMapFunction()) .groupBy(0) // (word, 1) -> 0 表示 word .sum(1); resultDataSet.print(); } public static class MyFlatMapFunction implements FlatMapFunction > { @Override public void flatMap(String input, Collector > collector) throws Exception { String[] words = input.split(" "); for (String word : words) { collector.collect(new Tuple2<>(word, 1)); } } } }
- 运行结果
import org.apache.flink.api.common.functions.FlatMapFunction; import org.apache.flink.api.java.tuple.Tuple2; import org.apache.flink.streaming.api.datastream.DataStreamSource; import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.util.Collector; public class StreamCount { public static void main(String[] args) throws Exception { // 1、创建执行环境 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // 2、读取 文件数据 数据 DataStreamSourceinputDataStream = env.readTextFile("H:\flink_demo\flink_test\src\main\resources\wordcount.txt"); // 3、计算 SingleOutputStreamOperator > resultDataStream = inputDataStream.flatMap(new FlatMapFunction >() { @Override public void flatMap(String input, Collector > collector) throws Exception { String[] words = input.split(" "); for (String word : words) { collector.collect(new Tuple2<>(word, 1)); } } }).keyBy(0) .sum(1); // 4、输出 resultDataStream.print(); // 5、启动 env env.execute(); } }
- 运行结果
统计文本:Flink 输出:Flink,1 统计文本:增加Spark 输出:Flink,2 Spark,1 统计文本:新增python 输出:Flink,3 Spark,2 python,13.3、流/批不同
流式处理的结果:是不断刷新的,在这个例子中,数据时一行一行进入处理任务的,进来一批处理一批,没有数据就处于等待状态。4、Flink在Yarn部署 4.1、代码打包
import org.apache.flink.api.common.functions.FlatMapFunction; import org.apache.flink.api.java.tuple.Tuple2; import org.apache.flink.api.java.utils.ParameterTool; import org.apache.flink.streaming.api.datastream.DataStreamSource; import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.util.Collector; public class StreamCount { public static void main(String[] args) throws Exception { // 1、创建执行环境 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // 2、读取 文件数据 数据 //DataStreamSourceinputDataStream = env.readTextFile("H:\flink_demo\flink_test\src\main\resources\wordcount.txt"); //2.2、用parameter tool工具从程序启动参数中提取配置项 ParameterTool parameterTool = ParameterTool.fromArgs(args); String host = parameterTool.get("host"); int port = parameterTool.getInt("port"); DataStreamSource inputDataStream = env.socketTextStream(host,port); // 3、计算 SingleOutputStreamOperator > resultDataStream = inputDataStream.flatMap(new FlatMapFunction >() { @Override public void flatMap(String input, Collector > collector) throws Exception { String[] words = input.split(" "); for (String word : words) { collector.collect(new Tuple2<>(word, 1)); } } }).keyBy(0) .sum(1); // 4、输出 resultDataStream.print().setParallelism(1); //打印执行计划图 System.out.println(env.getExecutionPlan()); // 5、启动 env env.execute(); } }
- 先编译后打包
(1)将jar包上传到flink集群
- Flink-ui界面 -》submit new job -》Add New
(2)配置参数
entry class:入口类 program Arguments:入口参数 parallelism:并行度,作业提交job时,如果代码没有配,以全局并行度为准,没有以此并性都为准,没有,以全局并行度为准 savapoint path:保存点,从之前存盘的地方启动
(3)运行结果
未成功,待解决
5、疑难杂症 5.1、maven的Plugin文件爆红- 解决方式 - 设置maven为本地maven库
New -> Settings -> maven6.2、Flink Web UI截面提交时显示Server reponse message
- 解决方式
vim {flink_home}/log
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)