人脸特征提取

人脸特征提取,第1张

人脸特征提取

一:dlib库

Dlib库是一个机器学习的开源库,包含了机器学习的很多算法,使用起来很方便,直接包含头文件即可,并且不依赖于其他库(自带图像编解码库源码)。

下载:

进入到官方网址下载: http://dlib.net/

Dlib的主要特点:
1. 文档齐全

不像很多其他的开源库一样,Dlib为每一个类和函数提供了完整的文档说明。同时,还提供了debug模式;打开debug模式后,用户可以调试代码,查看变量和对象的值,快速定位错误点。另外,Dlib还提供了大量的实例。

2. 高质量的可移植代码

Dlib不依赖第三方库,无须安装和配置,这部分可参照(官网左侧树形目录的how to compile的介绍)。Dlib可用在window、Mac OS、Linux系统上。

3. 提供大量的机器学习 / 图像处理算法

>> 深度学习

>> 基于SVM的分类和递归算法

>> 针对大规模分类和递归的降维方法
dlib库与opencv的安装

pip install dlib-19.19.0-cp38-cp38-win_amd64.whl

使用python库中的opencv,通过pip指令进行基本安装 

pip install opencv_python==3.4.11.45

二:人脸信息的采集:

 1.导入需要的包:

import numpy as np
import cv2
import dlib
import os
import sys
import random

2.设定图片亮度:

output_dir = 'D:/faces'
size = 64
if not os.path.exists(output_dir):
    os.makedirs(output_dir)
# 改变图片的亮度与对比度

3.设定图片的基本格式,调用dlib库的提取器:

def relight(img, light=1, bias=0):
    w = img.shape[1]
    h = img.shape[0]
    #image = []
    for i in range(0,w):
        for j in range(0,h):
            for c in range(3):
                tmp = int(img[j,i,c]*light + bias)
                if tmp > 255:
                    tmp = 255
                elif tmp < 0:
                    tmp = 0
                img[j,i,c] = tmp
    return img
#使用dlib自带的frontal_face_detector作为我们的特征提取器
detector = dlib.get_frontal_face_detector()

4.调用摄像头,读取人物图片:

# 打开摄像头 参数为输入流,可以为摄像头或视频文件
#camera = cv2.VideoCapture(0)
camera = cv2.VideoCapture('E:\Ai\face\人脸.png')
ok = True

5.调用人脸68点采集函数:

detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('E:\Ai\face\shape_predictor_68_face_landmarks.dat')

6.函数调用,完成人脸图像的采集:

while ok:
    # 读取摄像头中的图像,ok为是否读取成功的判断参数
    ok, img = camera.read()
    
    # 转换成灰度图像
    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    rects = detector(img_gray, 0)
    
    for i in range(len(rects)):
        landmarks = np.matrix([[p.x, p.y] for p in predictor(img,rects[i]).parts()])
        for idx, point in enumerate(landmarks):
            # 68点的坐标
            pos = (point[0, 0], point[0, 1])
            print(idx,pos)
    
            # 利用cv2.circle给每个特征点画一个圈,共68个
            cv2.circle(img, pos, 2, color=(0, 255, 0))
            # 利用cv2.putText输出1-68
            font = cv2.FONT_HERSHEY_SIMPLEX
            cv2.putText(img, str(idx+1), pos, font, 0.2, (0, 0, 255), 1,cv2.LINE_AA)
    cv2.imshow('video', img)
    k = cv2.waitKey(1)
    if k == 27:    # press 'ESC' to quit
        break
    
camera.release()
cv2.destroyAllWindows()

 

三:人物墨镜的绘制:

 1.导入package

# 导入包
import numpy as np
import cv2
import dlib
import os
import sys
import random

2.添加函数,获得人脸检测器和特征点检测器:

def get_detector_and_predicyor():
    #使用dlib自带的frontal_face_detector作为我们的特征提取器
    detector = dlib.get_frontal_face_detector()
    """
    功能:人脸检测画框
    参数:PythonFunction和in Classes
    in classes表示采样次数,次数越多获取的人脸的次数越多,但更容易框错
    返回值是矩形的坐标,每个矩形为一个人脸(默认的人脸检测器)
    """
    #返回训练好的人脸68特征点检测器
    predictor = dlib.shape_predictor('E:\Ai\face\shape_predictor_68_face_landmarks.dat')
    return detector,predictor

3.获取所需要的检测器:

#获取检测器
detector,predictor=get_detector_and_predicyor()

4.获取特征点函数,识别眼睛特征点,通过Circle函数对该点绘制墨镜

def painting_sunglasses(img,detector,predictor):   
    #给人脸带上墨镜
    rects = detector(img_gray, 0)  
    for i in range(len(rects)):
        landmarks = np.matrix([[p.x, p.y] for p in predictor(img,rects[i]).parts()])
        right_eye_x=0
        right_eye_y=0
        left_eye_x=0
        left_eye_y=0
        for i in range(36,42):#右眼范围
            #将坐标相加
            right_eye_x+=landmarks[i][0,0]
            right_eye_y+=landmarks[i][0,1]
        #取眼睛的中点坐标
        pos_right=(int(right_eye_x/6),int(right_eye_y/6))
        """
        利用circle函数画圆
        函数原型      
        cv2.circle(img, center, radius, color[, thickness[, lineType[, shift]]])
        img:输入的图片data
        center:圆心位置
        radius:圆的半径
        color:圆的颜色
        thickness:圆形轮廓的粗细(如果为正)。负厚度表示要绘制实心圆。
        lineType: 圆边界的类型。
        shift:中心坐标和半径值中的小数位数。
        """
        cv2.circle(img=img, center=pos_right, radius=30, color=(0,0,0),thickness=-1)
        for i in range(42,48):#左眼范围
           #将坐标相加
            left_eye_x+=landmarks[i][0,0]
            left_eye_y+=landmarks[i][0,1]
        #取眼睛的中点坐标
        pos_left=(int(left_eye_x/6),int(left_eye_y/6))
        cv2.circle(img=img, center=pos_left, radius=30, color=(0,0,0),thickness=-1)

5.函数调用,获取摄像头权限,采集人物图像点

camera = cv2.VideoCapture(0)#打开摄像头
ok=True
# 打开摄像头 参数为输入流,可以为摄像头或视频文件
while ok:
    ok,img = camera.read()
     # 转换成灰度图像
    img_gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    #display_feature_point(img,detector,predictor)
    painting_sunglasses(img,detector,predictor)#调用画墨镜函数
    cv2.imshow('video', img)
    k = cv2.waitKey(1)
    if k == 27:    # press 'ESC' to quit
        break
camera.release()
cv2.destroyAllWindows()

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/5480508.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-12-12
下一篇 2022-12-12

发表评论

登录后才能评论

评论列表(0条)

保存