def dist(point1, point2): return (point1[0]-point2[0])**2 + (point1[1]-point2[1])**2 def find_min_dist(center_xy, bbox_list): min_dist = 10000 min_idx = -1 for idx, bbox in enumerate(bbox_list): x1,y1,x2,y2 = bbox[0] center_x = (x1+x2)/2 center_y = (y1+y2)/2 dist_val = dist(center_xy, [center_x, center_y]) if dist_val < min_dist: min_dist = dist_val min_idx = idx return min_idx,min_dist def get_im_landmark_list_json(json_path, img_root_path): # pdb.set_trace() img_id_dict, img_id_box_class_dict = get_imgname_id_box_dict(json_path) img_name_list = os.listdir(img_root_path) ret_landmark_list = [] lable_list = [] for img_name in img_name_list: img_path = os.path.join(img_root_path, img_name) if img_name not in img_id_dict: print(f"img_id_dict error, img_name={img_id_dict}") exit(1) # pdb.set_trace() img_id = img_id_dict[img_name] bbox_list = img_id_box_class_dict[img_id] image = cv2.imread(img_path) results = hands.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) image_width, image_height = image.shape[1], image.shape[0] if results.multi_hand_landmarks : if len(results.multi_hand_landmarks) == len(bbox_list): for hand_idx, hand_landmarks in enumerate(results.multi_hand_landmarks): landmark_x_list = [] landmark_y_list = [] landmark_list = [] for _, landmark in enumerate(hand_landmarks.landmark): landmark_x = min(int(landmark.x * image_width), image_width - 1) landmark_y = min(int(landmark.y * image_height), image_height - 1) landmark_x_list.append(landmark_x) landmark_y_list.append(landmark_y) landmark_list.append([landmark_x, landmark_y]) pre_processed_landmark_list = pre_process_landmark(landmark_list) mean_x = sum(landmark_x_list)/len(landmark_x_list) mean_y = sum(landmark_y_list)/len(landmark_y_list) min_idx, _ = util.find_min_dist([mean_x, mean_y], bbox_list) class_id = bbox_list[min_idx][1] if len(pre_processed_landmark_list) >0: ret_landmark_list.append(pre_processed_landmark_list) lable_list.append([class_id]) # [mean_x, mean_y, mean_x+10, mean_y+10] # pdb.set_trace() print(bbox_list[min_idx][0]) # image = draw_box([int(mean_x), int(mean_y), int(mean_x+10), int(mean_y+10)], image, class_name=f"center_{hand_idx}", color = (0, 255, 0)) # image = draw_box(bbox_list[min_idx][0], image, class_name=f"{hand_idx}", color = (0, 255, 0)) mp_drawing.draw_landmarks(image, hand_landmarks, mp_hands.HAND_CONNECTIONS) else: print(f"gt box num and keypoint box num is not eque:{len(results.multi_hand_landmarks)}-{len(bbox_list)}") cv2.imwrite(f'annssswefw.jpg', image) return ret_landmark_list, lable_list
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)