Generic
JCache (JSR-107) (EhCache 3, Hazelcast, Infinispan, etc)
EhCache 2x
Hazelcast
Infinispan
Couchbase
Redis
Caffeine
Guava (deprecated)
Simple
建议使用spring boot集成方式,可插拔,简单。
集中式缓存适用场景:
1、服务器集群部署。
2、数据高一致性(任何数据变化都能及时的被查询到)
分布式缓存适用场景:
系统需要缓存的数据量大
对数据的可用性较高的情况
需要横向扩展,从而达到缓存的容量无限的要求『壹』 什么人适合报亚马逊AWS云计算架构师课程
AWS云计算架构师的认证课程分为两种,前一种叫做Architecting on AWS ,主要针对的是AWS 认证解内决方案架构师 – 助理级的容,后一种叫做Architecting on AWS – Advanced Concepts ,主要针对AWS 认证的解决方案架构师 – 专业人员。Architecting on AWS 课程主要讲在 AWS 上设计可扩展、有d性、安全且高可用的应用程序。Architecting on AWS Advanced Concepts 课程以 Architecting on AWS 课程中介绍的概念为基础,专门面向那些利用 AWS 云平台设计可扩展的、d性的应用的人员。后者可以看做是前者的进阶课程。目前这些课程的培训亚马逊AWS中国官方已经授权给国内泛IT教育公司慧科教育来做了,目前慧科教育是亚马逊云计算认证培训课程的独家授权培训机构。
『贰』 “云计算架构师”是什么
云计算架构师是具有实际Java/Ruby/Python等开发经验,熟悉云计算PaaS系统(如Google App engine, CloudFoundry等),熟悉云计算管理软版件(如Rightscale, Scalr, Enstratus等),熟悉基权于数据的云计算如Maprece/Hadoop,大数据处理和分析的人。
『叁』 云计算架构师 是什么
看了也许能给你些启发!
目前云计算是新新事物,新新事物风险和机遇并存。
云计算最有价值的理念之一是资源整合,物尽其用,之二是即服务的盈利模式
以直白的方式来表达:
云计算是整合资源以即方式提供服务(按需分配及支付),它主要在三个层面体现技术和服务。
一个是硬件基础设施层面,让硬件资源以即方式提供服务;
(客户要硬件环境资源,登录资源池自己定制、然后交钱、最后获取资源,用多少付多少钱;
付费对象是:应用开发者,企业IT管理者,应用平台供应商等。);
一个是应用平台层面,让应用平台以即方式提供服务;
(供应商提高软件平台,平台可以开发、部署、管理、监控应用,提供开放的类APP商店;
付费对象是:应用开发者。)
一个是应用层面,让应用以即方式提供服务;
(应用开放商,把应用部署在应用平台,用户可以去使用这些应用,按即方式享受服务和付费;
付费对象是:终端消费者。)
即方式服务:
像水电一样,从你开始使用到你结束使用进行度量,你登录应用入口就可以直接使用应用,
甚至不用在你本地安装应用,就像打开水龙头就可以用水一样,然后付费,它本质是一种推
的服务、盈利模式。
所以,云计算要学习就多方多面。
不过,他们的根本基础还是计算机科学与技术,包括网络、硬件、软件等,
只是硬件或平台会比较侧重虚拟机、网格计算、分布式计算等方面的技术,
而应用会比较在意用户体验、大众互联方面,应用主要技术还是软件开放技术,
特别可能会热于android或ios或wm的WIFI移动应用的开发。
下一波的IT浪潮就是云计算、物联网、人工智能、生物技术。
目前云计算是新新事物,教学资源紧张是正常的,新新事物风险和机遇并存。
请相信机遇的东西确实是过了这个村,没了这个店,云计算目前就像初期的计算机专业一样,
等它成熟了,等你看到它的发展了,那时候你就落后,只能在前人后面捡烟头。
好好把握学习这个专业的机会,目前云计算处于发展初期,等你毕业刚好是大展拳脚的好时机!
相信选择这个新新行业有风险,但机会总是给第一个敢吃螃蟹的人。
~~~~~~~~~~~~~~~~~~~~~~~~
来自:广州溯源—物联网、云计算、人工智能---构建绿色未来
『肆』 云计算到底是什么,云计算架构工程师是干什
云计算平台简单点来说,就是一个云端,是服务器端数据存储和处理中心,回我们可以通过客答户端进行 *** 作如小鸟云 *** 作后台,发出指令,而数据的处理会在服务器进行,然后将结果反馈给你,而云端平台数据可以共享,可以在任意地点对其进行 *** 作,这样可以节省大量资源,而且云端可以同时对多个对象组成的网络进行控制和协调,云端各种数据可以同时被多个用户使用。
云计算的基本原理是,通过使计算分布在大量的分布式计算机上,而非本地计算机或远程服务器中,企业数据中心的运行将更与互联网相似。这使得企业能够将资源切换到需要的应用上,根据需求访问计算机和存储系统。
『伍』 云计算架构
云计算架构主要可分为四层,其中有三层是横向的,分别是显示层、中间件层和基础设施层,通过这三层技术能够提供非常丰富的云计算能力和友好的用户界面,还有一层是纵向的,称为管理层,是为了更好地管理和维护横向的三层而存在的。下面介绍每个层次的作用和属于这个层次的主要技术。
显示层
这层主要是用于以友好的方式展现用户所需的内容,并会利用到下面中间件层提供的多种服务,主要有五种技术:
HTML:标准的Web页面技术,现在主要以HTML4为主,但是将要推出的HTML5会在很多方面推动Web页面的发展,比如视频和本地存储等方面。
JavaScript:一种用于Web页面的动态语言,通过JavaScript,能够极大地丰富Web页面的功能,最流行的JS框架有jQuery和Prototype。
CSS:主要用于控制Web页面的外观,而且能使页面的内容与其表现形式之间进行优雅地分离。
Flash:业界最常用的RIA(Rich Inter Applications)技术,能够在现阶段提供HTML等技术所无法提供的基于Web的富应用,而且在用户体验方面,非常不错。
Silverlight:来自业界巨擎微软的RIA技术,虽然其现在市场占有率稍逊于Flash,但由于其可以使用C#来进行编程,所以对开发者非常友好。
在显示层,大多数云计算产品都比较倾向HTML,、JavaScript和CSS这对黄金组合,但是Flash和Silverlight等RIA技 术也有一定的用武之地,比如VMware vCloud就采用了基于Flash的Flex技术,而微软的云计算产品肯定会在今后使用到Silverlight。
中间件层
这层是承上启下的,它在下面的基础设施层所提供资源的基础上提供了多种服务,比如缓存服务和REST服务等,而且这些服务即可用于支撑显示层,也可以直接让用户调用,并主要有五种技术:
REST:通过REST技术,能够非常方便和优雅地将中间件层所支撑的部分服务提供给调用者。
多租户:就是能让一个单独的应用实例可以为多个组织服务,而且保持良好的隔离性和安全性,并且通过这种技术,能有效地降低应用的购置和维护成本。
并行处理:为了处理海量的数据,需要利用庞大的X86集群进行规模巨大的并行处理,Google的MapRece是这方面的代表之作。
应用服务器:在原有的应用服务器的基础上为云计算做了一定程度的优化,比如用于Google App Engine的Jetty应用服务器。
分布式缓存:通过分布式缓存技术,不仅能有效地降低对后台服务器的压力,而且还能加快相应的反应速度,最著名的分布式缓存例子莫过于Memcached。
对于很多PaaS平台,比如用于部署Ruby应用的Heroku云平台,应用服务器和分布式缓存都是必备的,同时REST技术也常用于对外的接口, 多租户技术则主要用于SaaS应用的后台,比如用于支撑Salesforce的Sales Cloud等应用的Force多租户内核,而并行处理技术常被作为单独的服务推出,比如Amazon的Elastic MapRece。
基础设施层
这层作用是为给上面的中间件层或者用户准备其所需的计算和存储等资源,主要有四种技术:
虚拟化:也可以理解它为基础设施层的“多租户”,因为通过虚拟化技术,能够在一个物理服务器上生成多个虚拟 机,并且能在这些虚拟机之间能实现全面的隔离,这样不仅能减低服务器的购置成本,而且还能同时降低服务器的运维成本,成熟的X86虚拟化技术有 VMware的ESX和开源的Xen。
分布式存储:为了承载海量的数据,同时也要保证这些数据的可管理性,所以需要一整套分布式的存储系统,在这方面,Google的GFS是典范之作。
关系型数据库:基本是在原有的关系型数据库的基础上做了扩展和管理等方面的优化,使其在云中更适应。
NoSQL:为了满足一些关系数据库所无法满足的目标,比如支撑海量的数据等,一些公司特地设计一批不是基于关系模型的数据库,比如Google的BigTable和Facebook的Cassandra等。
现在大多数的IaaS服务都是基于Xen的,比如Amazon的EC2等,但VMware也推出了基于ESX技术的vCloud,同时业界也有几个 基于关系型数据库的云服务,比如Amazon的RDS(Relational Database Service)和Windows Azure SDS(SQL Data Services)等。关于分布式存储和NoSQL,它们已经被广泛用于云平台的后端,比如Google App Engine的Datastore就是基于BigTable和GFS这两个技术之上的,而Amazon则推出基于NoSQL技术的Simple DB。
管理层
这层是为横向的三层服务的,并给这三层提供多种管理和维护等方面的技术,主要有下面这六个方面:
帐号管理:通过良好的帐号管理技术,能够在安全的条件下方便用户地登录,并方便管理员对帐号的管理。
SLA监控:对各个层次运行的虚拟机,服务和应用等进行性能方面的监控,以使它们都能在满足预先设定的SLA(Service Level Agreement)的情况下运行。
计费管理:也就是对每个用户所消耗的资源等进行统计,来准确地向用户索取费用。
安全管理:对数据,应用和帐号等IT资源采取全面地保护,使其免受犯罪分子和恶意程序的侵害。
负载均衡:通过将流量分发给一个应用或者服务的多个实例来应对突 况。 运维管理:主要是使运维 *** 作尽可能地专业和自动化 ,从而降低云计算中心成本。
负载均衡:通过将流量分发给一个应用或者服务的多个实例来应对突 况。
运维管理:主要是使运维 *** 作尽可能地专业和自动化,从而降低云计算中心的运维成本。
现在的云计算产品在帐号管理,计费管理和负载均衡这三个方面大都表现地不错,在这方面最突出的例子就是Amazon 的EC2,但可惜的是,大多数产品在SLA监控,安全管理和运维管理等方面还有所欠缺。
举例
接下来,将以Salesforce的Sales Cloud和Google的App Engine这两个著名的云计算产品为例,来帮助大家理解本文所提到的云计算架构:
Salesforce Sales Cloud
也就是之前的Salesforce CRM(客户关系管理),属于云计算中的SaaS层,主要是通过在云中部署可定制化的CRM应用,来让企业用户在很低初始投入的情况下使用上CRM,并且 可根据自身的流程来进行灵活地定制,而且只需接入网络就能使用。在技术层面上大致的架构:
采用的主要技术:
显示层:基于HTML、JavaScript和CSS这对黄金组合。
中间件层:在此层,Salesforce引入了多租户内核和为支撑此内核运行而经过定制的应用服务器。
基础设施层:虽然在后端还是使用在企业环境中很常见的Oracle数据库,但是其为了支撑上层的多租户内核做了很多的优化。
管理层:在安全管理方面,Salesforce提供了多层保护,并支持SSL加密等技术,除此之外,其还在帐号管理、计费管理和负载均衡这三方面有不错地支持。
Google App Engine
App Engine属于云计算中的PaaS层,其主要提供一个平台,来让用户在Google强大的基础设施上部署和运行应用程序,同时App Engine会根据应用所承受的负载来对应用所需的资源进行调整,并免去用户对应用和服务器等的维护工作,而且支持Java和Python这两种语言。由 于App Engine属于PaaS平台,所以关于显示层的技术选择由应用的自身需要而定,与App Engine无关,关于App Engine在技术层面上大致的架构。
采用的主要技术:
中间件层:既有经过定制化的应用服务器,比如上面已经提到过的Jetty,也提供基于Memcached的分布式缓存服务。
基础设施层: 在分布式存储GFS的基础上提供了NoSQL数据库BigTable来对应用的数据进行持久化。
管理层:由于App Engine是基于Google强大的分布式基础设施,使其在运维管理技术方面非常出色,同时其计费管理能做到非常细粒度的API级计费,而且App Engine在帐号管理和负载均衡这两方面都有非常好地支持。
以上内容分析源自OFweek物联网,希望对大家有帮助。
『陆』 什么是云计算云架构管理
目前,在移动互联网行业中较为火热、势头猛烈的当属Web前端开发。且在2019年招聘旺季中,Web前端开发程序员处于供不应求的状态,对于0基础想要从事互联网行业的小伙伴们,Web前端将会是最合适的入门编程语言。而且根据后期的职业发展规划来看,只要入门Web前端,在职场上发展个三到五年,基本上都能做到总监级别。
什么是web前端?
我对『前端』的理解,
前:代表与人直接打交道的这部分,包括界面的展现,与用户的交互等
端:代表输出终端,例如pc浏览器,手机浏览器,甚至有些app,有些应用程序
合起来的意思也就是这些浏览器,app,应用程序的界面展现以及用户交互就是前端
用互联网来做比喻,凡是通过浏览器到用户端计算机的统称为前端技术相反存贮于服务器端的统称为后端技术
前端技术包括JavaScript、ActionScript、CSS、xHTML等“传统”技术与Adobe AIR、Google Gears,以及概念性较强的交互式设计,艺术性较强的视觉设计等等
Web前端,主要是用来开发用户通过浏览器可以浏览和使用的Web页面的。 一般而言,所涉及的内容主要包括W3C中的HTML、CSS和JavaScript这三方面的内容。
HTML+CSS:也就是网站的骨架和样子,包括你看到的知乎的界面,一段文字,一个,都是一个HTML元素,至于字号是多大的,什么颜色,放在什么位置,这叫CSS,在HTML5里,CSS还能让元素运动起来,旋转,跳跃,只要你想;
Javascript:简单的说就是页面的大脑,把后端获取的数据添加到网页里,或者让元素运动起来,或者是改变页面的CSS,或者是 *** 作HTML元素等等。当然,这些都是最基础的做法,作为一个前端,还要考虑JS的性能,可维护,可扩展的程度等等;
但是随着前端的发展,前端开发所涉及到的内容肯定不仅限于这三方面。分析这三个层面内容的本质可以看到,这三个层面分别涉及Web页面的结构、Web的外观视觉表现以及Web层面的交互实现。
因而,归根结底,Web前端以及Web前端开发可以说是针对Web的结构、行为和表现来进行相应的开发的,也可以说,前端开发主要是做Web端的结构、行为以及表现。
『柒』 云计算架构师课程要怎么学习
(1)Linux之美280课时
本阶段课程会带领学员进入Linux的世界,深入学习强大的Linux *** 作系统,建立服务器 *** 作思维,培养良好的运维思想。
(2)强大的Linux服务器200课时
本阶段课程正式学习Linux中各种网络服务,当前互联网中绝大多数的应用功能(如网站、视频、游戏、购物、邮件、下载等)都需要不同的Linux服务支撑。
(3)玩转集群与云计算技术200课时
本阶段课程讲授集群架构、负载均衡、代理服务、分布式存储、主从备份、云计算、虚拟化、Hadoop等各种高大上的知识,内容涵盖了云计算架构师工作中所需的所有技术
(4)网络安全技术与项目实践80课时
本阶段课程教你专业的网络安全技术,安全防护工具、防火墙、入侵检测等。
学习云计算,还是兄弟连好
『捌』 如何成为一名云计算架构师
云计算和linux有些关系,目前用的虚拟化,除微软的,其它都是跑在linux系统上的,
Linux运维 可以同时学,不过这是两个方向,看你自己测重点在哪里,学一个学精就好了
『玖』 云计算的知识架构是什么
首先是从系抄统集成的角度:服务器群(特别是刀片服务器群,最典型),存储,完成物理架构。
其次是系统软件:然后是裸金属虚拟机,在这些服务器群上安装虚拟机,配置虚拟存储。
最后是应用软件,要提供SAAS、PAAS、IAAS等服务,比如提供云存储(如微盘)、云ERP等等应用。
大部分说的云,都是这样,IBM的云是一台大机,虚拟成多个。。。和这个物理结构正好相反。
『拾』 云计算的架构是什么样的
云计算到目前为止架构主要可分为四层,瑭锦在这方面还是不错的
首先:显示层,多数据中心云计算架构这层主要是用于以友好的方式展现用户所需的内容,并会利用到下面中间件层提供的多种服务,主要有五种技术:
HTML:标准的Web页面技术,现在主要以HTML4为主,但是将要推出的HTML5会在很多方面推动Web页面的发展,比如视频[1]和本地存储等方面。
JavaScript:一种用于Web页面的动态语言,通过JavaScript,能够极大地丰富Web页面的功能。
CSS:主要用于控制Web页面的外观,而且能使页面的内容与其表现形式之间进行优雅地分离。
Flash[2]:业界最常用的RIA(Rich Inter Applications)技术,能够在现阶段提供HTML等技术所无法提供的基于Web的富应用,而且在用户体验[3]方面,非常不错。
Silverlight:来自业界巨擎微软[4]的RIA技术,虽然其现在市场占有率稍逊于Flash,但由于其可以使用C#[5]来进行编程,所以对开发者非常友好。
其次:中间层这层是承上启下的,它在下面的基础设施层所提供资源的基础上提供了多种服务,比如缓存服务和REST服务等,而且这些服务即可用于支撑显示层,也可以直接让户调用,并主要有五种技术;
REST:通过REST技术,能够非常方便和优雅地将中间件层所支撑的部分服务提供给调用者。
多租户:就是能让一个单独的应用实例可以为多个组织服务,而且保持良好的隔离性和安全性,并且通过这种技术,能有效地降低应用的购置和维护成本。
并行处理:为了处理海量的数据,需要利用庞大的X86集群进行规模巨大的并行处理,Google的MapRece是这方面的代表之作。
应用服务器:在原有的应用服务器的基础上为云计算做了一定程度的优化,比如用于Google App Engine的Jetty应用服务器。
分布式缓存:通过分布式缓存技术,不仅能有效地降低对后台服务器的压力,而且还能加快相应的反应速度,最著名的分布式缓存例子莫过于MemcachedRedis与Memcached的区别
传统MySQL+ Memcached架构遇到的问题
实际MySQL是适合进行海量数据存储的,通过Memcached将热点数据加载到cache,加速访问,很多公司都曾经使用过这样的架构,但随着业务数据量的不断增加,和访问量的持续增长,我们遇到了很多问题:
1MySQL需要不断进行拆库拆表,Memcached也需不断跟着扩容,扩容和维护工作占据大量开发时间。
2Memcached与MySQL数据库数据一致性问题。
3Memcached数据命中率低或down机,大量访问直接穿透到DB,MySQL无法支撑。
4跨机房cache同步问题。
众多NoSQL百花齐放,如何选择
最近几年,业界不断涌现出很多各种各样的NoSQL产品,那么如何才能正确地使用好这些产品,最大化地发挥其长处,是我们需要深入研究和思考的
问题,实际归根结底最重要的是了解这些产品的定位,并且了解到每款产品的tradeoffs,在实际应用中做到扬长避短,总体上这些NoSQL主要用于解
决以下几种问题
1少量数据存储,高速读写访问。此类产品通过数据全部in-momery 的方式来保证高速访问,同时提供数据落地的功能,实际这正是Redis最主要的适用场景。
2海量数据存储,分布式系统支持,数据一致性保证,方便的集群节点添加/删除。
3这方面最具代表性的是dynamo和bigtable 2篇论文所阐述的思路。前者是一个完全无中心的设计,节点之间通过gossip方式传递集群信息,数据保证最终一致性,后者是一个中心化的方案设计,通过类似一个分布式锁服务来保证强一致性,数据写入先写内存和redo log,然后定期compat归并到磁盘上,将随机写优化为顺序写,提高写入性能。
4Schema free,auto-sharding等。比如目前常见的一些文档数据库都是支持schema-free的,直接存储json格式数据,并且支持auto-sharding等功能,比如mongodb。
面对这些不同类型的NoSQL产品,我们需要根据我们的业务场景选择最合适的产品。
Redis适用场景,如何正确的使用
前面已经分析过,Redis最适合所有数据in-momory的场景,虽然Redis也提供持久化功能,但实际更多的是一个disk-
backed的功能,跟传统意义上的持久化有比较大的差别,那么可能大家就会有疑问,似乎Redis更像一个加强版的Memcached,那么何时使用
Memcached,何时使用Redis呢
如果简单地比较Redis与Memcached的区别,大多数都会得到以下观点:
1 Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,zset,hash等数据结构的存储。
2 Redis支持数据的备份,即master-slave模式的数据备份。
3 Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
抛开这些,可以深入到Redis内部构造去观察更加本质的区别,理解Redis的设计。
在
Redis中,并不是所有的数据都一直存储在内存中的。这是和Memcached相比一个最大的区别。Redis只会缓存所有的
key的信息,如果Redis发现内存的使用量超过了某一个阀值,将触发swap的 *** 作,Redis根据“swappability =
agelog(size_in_memory)”计
算出哪些key对应的value需要swap到磁盘。然后再将这些key对应的value持久化到磁盘中,同时在内存中清除。这种特性使得Redis可以
保持超过其机器本身内存大小的数据。当然,机器本身的内存必须要能够保持所有的key,毕竟这些数据是不会进行swap *** 作的。同时由于Redis将内存
中的数据swap到磁盘中的时候,提供服务的主线程和进行swap *** 作的子线程会共享这部分内存,所以如果更新需要swap的数据,Redis将阻塞这个
*** 作,直到子线程完成swap *** 作后才可以进行修改。
使用Redis特有内存模型前后的情况对比:
VM off: 300k keys, 4096 bytes values: 13G used
VM on: 300k keys, 4096 bytes values: 73M used
VM off: 1 million keys, 256 bytes values: 43012M used
VM on: 1 million keys, 256 bytes values: 16009M used
VM on: 1 million keys, values as large as you want, still: 16009M used
当
从Redis中读取数据的时候,如果读取的key对应的value不在内存中,那么Redis就需要从swap文件中加载相应数据,然后再返回给请求方。
这里就存在一个I/O线程池的问题。在默认的情况下,Redis会出现阻塞,即完成所有的swap文件加载后才会相应。这种策略在客户端的数量较小,进行
批量 *** 作的时候比较合适。但是如果将Redis应用在一个大型的网站应用程序中,这显然是无法满足大并发的情况的。所以Redis运行我们设置I/O线程
池的大小,对需要从swap文件中加载相应数据的读取请求进行并发 *** 作,减少阻塞的时间。
如果希望在海量数据的环境中使用好Redis,我相信理解Redis的内存设计和阻塞的情况是不可缺少的。
补充的知识点:
memcached和redis的比较
1 网络IO模型
Memcached是多线程,非阻塞IO复用的网络模型,分为监听主线程和worker子线程,监听线程监听网络连接,接受请求后,将连接描述
字pipe 传递给worker线程,进行读写IO, 网络层使用libevent封装的事件库,多线程模型可以发挥多核作用,但是引入了cache
coherency和锁的问题,比如,Memcached最常用的stats
命令,实际Memcached所有 *** 作都要对这个全局变量加锁,进行计数等工作,带来了性能损耗。
(Memcached网络IO模型)
Redis使用单线程的IO复用模型,自己封装了一个简单的AeEvent事件处理框架,主要实现了epoll、kqueue和select,
对于单纯只有IO *** 作来说,单线程可以将速度优势发挥到最大,但是Redis也提供了一些简单的计算功能,比如排序、聚合等,对于这些 *** 作,单线程模型实
际会严重影响整体吞吐量,CPU计算过程中,整个IO调度都是被阻塞住的。
2内存管理方面
Memcached使用预分配的内存池的方式,使用slab和大小不同的chunk来管理内存,Item根据大小选择合适的chunk存储,内
存池的方式可以省去申请/释放内存的开销,并且能减小内存碎片产生,但这种方式也会带来一定程度上的空间浪费,并且在内存仍然有很大空间时,新的数据也可
能会被剔除,原因可以参考Timyang的文章:>Ehcache
Ehcache 是一个Java实现的开源分布式缓存框架,EhCache 可以有效地减轻数据库的负载,可以让数据保存在不同服务器的内存中,在需要数据的时候可以快速存取。同时EhCache 扩展非常简单,官方提供的Cache配置方式有好几种。你可以通过声明配置、在xml中配置、在程序里配置或者调用构造方法时传入不同的参数。
特点:
存取速度非常快,性能很不错。
可以应用多种缓存策略。
分级缓存,用户可以指定哪些数据在硬盘中缓存,哪些数据在内存中缓存。
可以通过RMI、可插入API等方式进行分布式缓存。
具有缓存和缓存管理器的侦听接口。
支持多缓存管理器实例,以及一个实例的多个缓存区域。
默认提供Hibernate的缓存实现一致性Hash算法也使用取模的方法,刚才描述的取模法是对服务器的数量进行取模,而一致性Hash算法是对2^32取模
首先,我们把2^32 想象成一个圆,圆上一共有2^32 个点,编号0-2^32-1,这个圆称为hash环
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)