通过前面标签解析,创建BeanFactory之后就可以调用getBean方法获取bean
MyTestBean bean = (MyTestBean) beanFactory.getBean("myTestBean");
我们大概过一下getBean方法源码
// AbstractBeanFactory.java @Override public Object getBean(String name) throws BeansException { return doGetBean(name, null, null, false); } protectedT doGetBean( final String name, final Class requiredType, final Object[] args, boolean typeCheckOnly) throws BeansException { // 提取beanName final String beanName = transformedBeanName(name); Object bean; Object sharedInstance = getSingleton(beanName); if (sharedInstance != null && args == null) { if (logger.isDebugEnabled()) { if (isSingletonCurrentlyInCreation(beanName)) { logger.debug("Returning eagerly cached instance of singleton bean '" + beanName + "' that is not fully initialized yet - a consequence of a circular reference"); } else { logger.debug("Returning cached instance of singleton bean '" + beanName + "'"); } } // 返回对象的实例,有时候存在诸如BeanFactory的情况并不是直接返回实例本身而是返回指定方法返回的实例 bean = getObjectForBeanInstance(sharedInstance, name, beanName, null); } else { // 只有在单例模式下才会尝试解决循环依赖,原型模式情况下,如果存在A中有B的属性,B中有A的属性,那么当依赖注入时,就会产生当A创建 // 完的时候因为对于B的创建再次返回创建A,造成循环依赖 if (isPrototypeCurrentlyInCreation(beanName)) { throw new BeanCurrentlyInCreationException(beanName); } // Check if bean definition exists in this factory. BeanFactory parentBeanFactory = getParentBeanFactory(); // 如果beanDefinitionMap中也就是所有已经加载的类中不包括beanName则尝试从parentBeanFactory中检查 if (parentBeanFactory != null && !containsBeanDefinition(beanName)) { // Not found -> check parent. String nameToLookup = originalBeanName(name); // 递归BeanFactory中寻找 if (args != null) { // Delegation to parent with explicit args. return (T) parentBeanFactory.getBean(nameToLookup, args); } else { // No args -> delegate to standard getBean method. return parentBeanFactory.getBean(nameToLookup, requiredType); } } // 如果不是仅仅做类型检查则是创建Bean if (!typeCheckOnly) { markBeanAsCreated(beanName); } try { // 将存储XML配置文件的GernericBeanDefinition转换成RootBeanDefinition,如果指定BeanName是子Bean会同时合并父类的相关属性 final RootBeanDefinition mbd = getMergedLocalBeanDefinition(beanName); checkMergedBeanDefinition(mbd, beanName, args); // Guarantee initialization of beans that the current bean depends on. String[] dependsOn = mbd.getDependsOn(); // 如果有依赖则需要递归实例化依赖的bean if (dependsOn != null) { for (String dependsonBean : dependsOn) { if (isDependent(beanName, dependsOnBean)) { throw new BeanCreationException("Circular depends-on relationship between '" + beanName + "' and '" + dependsonBean + "'"); } // 缓存依赖调用 registerDependentBean(dependsOnBean, beanName); getBean(dependsOnBean); } } // Create bean instance. // 实例化依赖的bean后便可以实例化自身 if (mbd.isSingleton()) { sharedInstance = getSingleton(beanName, new ObjectFactory
通过上述描述可以初步了解Spring加载Bean的过程,其中涉及的流程大致如下
-
转换beanName
上述方法传入的name可能并不是beanName。传入的参数可能是别名,也可能是FactoryBean,所以需要进行一系列的解析
-
去除FactoryBean的修饰符,即如果name="&aa",那么首先会去除&,name=“aa”
-
取指定alias所表示的最终beanName,例如别名A指向名称为B的bean则返回B;若别名A指向别名B,别名B又指向名称C的Bean,则返回C
-
-
尝试从缓存中加载单例
单例在Spring同一容器中只会被创建一次,之后获取bean,直接从缓存中获取。这里首先从缓存加载,如果加载不成功则尝试从singletonFactory中加载。因为创建单例bean的时候会存在依赖注入的情况,在创建依赖时为了避免循环依赖,在Spring中创建bean的原则是不等bean创建完成就将创建bean的ObjectFactory加入到缓存,一旦下一个bean创建时需要依赖上一个bean则直接使用ObjectFactory
-
bean的实例化
如果从缓存中得到了bean的原生状态,则需要对bean进行实例化。缓存中记录的只是bean的原始状态,并不一定是我们最终想要的bean。例如需要对工厂bean进行处理,这里得到的其实是工厂bean的初始状态,但我们真正需要的是工厂bean中定义的factory-method方法返回的bean,而getObjectForBeanInstance就是完成这个工作
-
原型模式的依赖检查
只有单例情况下才会尝试解决循环依赖,如果存在A中有B的属性,B中有A的属性,当依赖注入时,会产生当A还未创建完成的时候因为对B的创建再次创建A,造成循环依赖
-
检测parentBeanFactory
缓存没有数据则到父类工厂上去加载。前提是必须要有父类工厂,并且当前加载的XML配置文件中不包含beanName对应的配置
-
将存储XML配置文件的GernericBeanDefinition转换为RootBeanDefinition
从XML配置文件中读取到的Bean信息是存储在GenericBeanDefinition中的,但是所有Bean的后续处理都是针对RootBeanDefinition,所以这里需要进行一个转换,转换的同时如果父类bean不为空,则会一并合并父的属性
-
寻找依赖
因为bean的初始化过程中可能会用到某些动态配置的属性,并且配置成依赖于其他bean,这时就需要先加载依赖的bean,因此在Spring的加载顺序中,在初始化某个bean的时候首先会初始化其依赖的bean
-
针对不同的scope进行bean的创建
Spring中存在着不同的scope,Spring会根据不同的配置进行不同的初始化策略
-
类型转换
程序到这里返回bean后已经基本结束,通常对该方法的调用参数requiredType是为空,但可能存在这样的情况,返回的bean是个String,requiredType却是Integer类型,那本步骤就会起作用,其功能是将返回的bean转换为requiredType所指定的类型。当然,String转换为Integer是最简单的转换,在Spring中提供了各种各样的转换器,用户也可以自己扩展转换器来满足需求
经过上面步骤bean的加载就结束来,此时就可以返回我们需要的bean了。在进行深入研究各个步骤提供的功能前,我们需要先了解FactoryBean的用法
FactoryBean的使用通常情况下Spring通过反射机制利用bean的class属性指定实现类来实例化bean。在某些情况下,实例化bean过程复杂,按照配置文件的方式,需要在中提供大量的配置信息,但如果使用编码的方式可能会变得更简单。为实现通过编码方式实例化bean Spring提供了org.Springframework.bean.factory.FactoryBean
工厂类接口,通过实现该接口可以定制实例化bean
FactoryBean接口对于Spring框架来说占有重要地位,Spring自身提供了大量的FactoryBean的实现。它们隐藏了实例化复杂bean的细节。从Spring 3.0开始,FactoryBean开始支持泛型,接口声明改为FactoryBean形式
public interface FactoryBean{ T getObject() throws Exception; Class> getObjectType(); boolean isSingleton(); }
在该接口中定义了以下3个方法
-
T getObject():返回由FactoryBean创建的bean实例,如果isSingleton()返回true,则该实例会放到Spring容器中单例缓存池中
-
boolean isSingleton():返回由FactoryBean创建的bean实例的作用域是singleton还是prototype
-
Class getObjectType():返回FactoryBean创建的bean类型
当配置文件中的class属性配置的实现类是FactoryBean时,通过getBean()方法返回的不是FactoryBean本身,而是FactoryBean#getObject()方法所返回的对象。例:通过配置文件方式配置User的时,其每个属性分别对应一个元素标签
public class User { private String userName; private String email; public void showMe(){ System.out.println("I am user"); } public String getUserName() { return userName; } public void setUserName(String userName) { this.userName = userName; } public String getEmail() { return email; } public void setEmail(String email) { this.email = email; } }
如果使用FactoryBean的方式,可以灵活的定制bean
public class UserBeanFactory implements FactoryBean { @Override public Object getObject() throws Exception { User user = new User(); user.setUserName("aa"); user.setEmail("bb"); return user; } @Override public Class> getObjectType() { return User.class; } @Override public boolean isSingleton() { return false; } }
通过如下方式指定使用自定义FactoryBean实现bean初始化
当调用getBean(“user”)时,Spring通过反射机制发现UserBeanFactory实现了FactoryBean接口,Spring 容器会调用接口方法UserBeanFactory#getObject()方法返回。如果希望获取CarFactoryBean实例,则需要使用getBean(beanName)方法时在beanName前添加"&“前缀,例如getBean(”&user")
缓存中获取单列bean单例在Spring的同一个容器内只会被创建一次,后续获取bean尝试直接从单例缓存中获取,首先尝试从缓存中加载,然后再尝试从singletonFactories中加载。因为创建单例bean的时候会存在依赖注入的情况,而在创建依赖的时候为避免循环依赖,Spring创建bean的原则是不等bean创建完成就将创建bean的
ObjectFactory提早曝光加入到缓存中,一旦下一个bean创建时需要依赖上一个bean,则直接使用ObjectFactory
public Object getSingleton(String beanName) { // 参数true设置标识允许早起依赖 return getSingleton(beanName, true); } protected Object getSingleton(String beanName, boolean allowEarlyReference) { // 检查缓存中是否存在实例 Object singletonObject = this.singletonObjects.get(beanName); if (singletonObject == null && isSingletonCurrentlyInCreation(beanName)) { // 如果为空,则锁定全局变量并进行处理 synchronized (this.singletonObjects) { // 如果此bean正在加载则不处理 singletonObject = this.earlySingletonObjects.get(beanName); if (singletonObject == null && allowEarlyReference) { // 当某些方法需要提前初始化的时候会调用addSingletonFactory方法将对应的objectFactory初始化策略存储在singletonFactories ObjectFactory> singletonFactory = this.singletonFactories.get(beanName); if (singletonFactory != null) { // 调用预先设定的getObject方法 singletonObject = singletonFactory.getObject(); // 记录在缓存中,earlySingletonObjects和singletonFactories互斥 this.earlySingletonObjects.put(beanName, singletonObject); this.singletonFactories.remove(beanName); } } } } return (singletonObject != NULL_OBJECT ? singletonObject : null); }
这个方法首先尝试从singletonObjects里面获取实例,如果获取不到再从earlySingletonObjects中获取,如果还获取不到,再尝试从singletonFactories中获取beanName对应ObjectFactory,然后调用这个ObjectFactory的getObject方法创建bean,并放到earlySingletonObjects里面,并且从singletonFacotories里面remove掉这个ObjectFactory,而对于后续的所有内存 *** 作都只为循环依赖检查时使用,也就是在allowEarlyReference为true的情况下才会使用。上面解析可以看到从各种不同作用的map中获取缓存值,这些缓存map作用如下
-
singletonObjects:用于保存BeanName和创建bean实例之间的关系,bean name -> bean instance
-
singletonFactories:用于保存BeanName和创建Bean的工厂之间的关系,bean name -> ObjectFacotry
-
earlySingletonObjects:保存BeanName和创建Bean实例之间的关系,与singletonObjects的不同之处在于,当一个单例bean放入这里,当bean还在创建过程中,就可以通过getBean方法获取到,目的是用来检测循环依赖
-
registeredSingletons:用来保存当前所有已注册的bean
在getBean方法中,getObjectForBeanInstance是个高频使用方法,无论是从缓存中获取bean还是根据不同的scope策略加载bean。得到bean实例后要做的第一步就是调用这个方法检测一下正确性,其本质就是检测当前bean是否是FactoryBean类型的bean,如果是,需要调用该bean对应的FactoryBean实例中的getObject()作为返回值
无论从缓存中获取的bean还是通过不同scope策略加载的bean都只是最原始的bean状态,并不一定是我们最终想要的bean。假设我们需要对工厂bean进行处理,这里得到的其实是工厂bean的初始状态,我们真正需要的是工厂bean中定义的factory-method方法中返回的bean,getObjectForBeanInstance就是做此工作的
protected Object getObjectForBeanInstance( Object beanInstance, String name, String beanName, RootBeanDefinition mbd) { // 如果name为以&作前缀,且beanInstance又不是FactoryBean类型则验证不通过 if (BeanFactoryUtils.isFactoryDereference(name) && !(beanInstance instanceof FactoryBean)) { throw new BeanIsNotAFactoryException(transformedBeanName(name), beanInstance.getClass()); } // 如果bean实例不是工厂bean,或者name是以&开头,则直接返回bean实例。其实际意义是如果用户想获取工厂bean // 而不是工厂bean,getObject方法返回的实例请在调用getBean方法传入name时添加&。对于非工厂bean则直接返回。 // 对于工厂bean,并想通过工厂getObject方法获取实例bean,则需要继续执行后面 *** 作 if (!(beanInstance instanceof FactoryBean) || BeanFactoryUtils.isFactoryDereference(name)) { return beanInstance; } // 加载FactoryBean Object object = null; if (mbd == null) { // 尝试从缓存中加载bean object = getCachedObjectForFactoryBean(beanName); } if (object == null) { // Return bean instance from factory. FactoryBean> factory = (FactoryBean>) beanInstance; // containsBeanDefinition检测beanDefinitionMap中也就是所有已经加载的类中检测是否包含beanName if (mbd == null && containsBeanDefinition(beanName)) { // 将存储XML配置文件的GernericBeanDefinition转换为RootBeanDefinitio,如果指定BeanName是子Bean同时会合并父类的相关属性 mbd = getMergedLocalBeanDefinition(beanName); } // 是否是用户定义的而不是应用程序本身定义的 boolean synthetic = (mbd != null && mbd.isSynthetic()); object = getObjectFromFactoryBean(factory, beanName, !synthetic); } return object; }
此方法中逻辑都是一些功能性判断,真正核心的逻辑在getObjectFromFactoryBean方法中。在getObjectForBeanInstance方法中主要完成如下工作
-
对FactoryBean正确性验证
-
对非FactoryBean不做任何处理
-
对bean进行转换
-
将从Factory中解析bean的工作委托给getObjectFromFactoryBean
getObjectFactoryBean方法实现如下
protected Object getObjectFromFactoryBean(FactoryBean> factory, String beanName, boolean shouldPostProcess) { if (factory.isSingleton() && containsSingleton(beanName)) { synchronized (getSingletonMutex()) { Object object = this.factoryBeanObjectCache.get(beanName); if (object == null) { object = doGetObjectFromFactoryBean(factory, beanName, shouldPostProcess); this.factoryBeanObjectCache.put(beanName, (object != null ? object : NULL_OBJECT)); } return (object != NULL_OBJECT ? object : null); } } else { return doGetObjectFromFactoryBean(factory, beanName, shouldPostProcess); } }
这个方法中判断如果是单例并且缓存中包含这个bean,则从缓存中获取,如果获取不到则调用doGetObjectFromFactoryBean获取bean,并放入缓存中,如果不是单例或缓存中没有该bean,则直接通过doGetObjectFromFactoryBean获取bean。doGetObjectFromFactoryBean代码实现如下
private Object doGetObjectFromFactoryBean( final FactoryBean> factory, final String beanName, final boolean shouldPostProcess) throws BeanCreationException { Object object; try { // 需要权限验证 if (System.getSecurityManager() != null) { AccessControlContext acc = getAccessControlContext(); try { object = AccessController.doPrivileged(new PrivilegedExceptionAction() { @Override public Object run() throws Exception { return factory.getObject(); } }, acc); } catch (PrivilegedActionException pae) { throw pae.getException(); } } else { // 直接调用getObject方法 object = factory.getObject(); } } catch (FactoryBeanNotInitializedException ex) { throw new BeanCurrentlyInCreationException(beanName, ex.toString()); } catch (Throwable ex) { throw new BeanCreationException(beanName, "FactoryBean threw exception on object creation", ex); } // Do not accept a null value for a FactoryBean that's not fully // initialized yet: Many FactoryBeans just return null then. if (object == null && isSingletonCurrentlyInCreation(beanName)) { throw new BeanCurrentlyInCreationException( beanName, "FactoryBean which is currently in creation returned null from getObject"); } if (object != null && shouldPostProcess) { try { // 调用objectFactory的后处理器 object = postProcessObjectFromFactoryBean(object, beanName); } catch (Throwable ex) { throw new BeanCreationException(beanName, "Post-processing of the FactoryBean's object failed", ex); } } return object; }
如果bean声明为FactoryBean类型,则当提取bean时提取的并不是FactoryBean,而是FactoryBean中对应的getObject方法返回的bean,再通过factory.getObject()得到我们需要的结果后并没有直接返回,而是调用AbstractAutowireCapableBeanFactory类的postProcessObjectFactoryBean方法调用后置处理器
public Object applyBeanPostProcessorsAfterInitialization(Object existingBean, String beanName) throws BeansException { Object result = existingBean; for (BeanPostProcessor beanProcessor : getBeanPostProcessors()) { result = beanProcessor.postProcessAfterInitialization(result, beanName); if (result == null) { return result; } } return result; }
用户可以自己实现BeanPostProcessor接口方法,当bean初始化后会调用用户实现的postProcessAfterInitialization方法
获取单列如果缓存中不存在已经加载的单例bean就需要从头开始bean的加载过程,Spring中使用getSingleton的重载方法实现bean的加载过程
public Object getSingleton(String beanName, ObjectFactory> singletonFactory) { Assert.notNull(beanName, "'beanName' must not be null"); // 全局变量需要同步 synchronized (this.singletonObjects) { // 检查对应的bean是否已经被加载过,如果已被加载过则直接返回 Object singletonObject = this.singletonObjects.get(beanName); if (singletonObject == null) { if (this.singletonsCurrentlyInDestruction) { throw new BeanCreationNotAllowedException(beanName, "Singleton bean creation not allowed while the singletons of this factory are in destruction " + "(Do not request a bean from a BeanFactory in a destroy method implementation!)"); } if (logger.isDebugEnabled()) { logger.debug("Creating shared instance of singleton bean '" + beanName + "'"); } beforeSingletonCreation(beanName); boolean recordSuppressedExceptions = (this.suppressedExceptions == null); if (recordSuppressedExceptions) { this.suppressedExceptions = new linkedHashSet(); } try { // 初始化bean singletonObject = singletonFactory.getObject(); } catch (BeanCreationException ex) { if (recordSuppressedExceptions) { for (Exception suppressedException : this.suppressedExceptions) { ex.addRelatedCause(suppressedException); } } throw ex; } finally { if (recordSuppressedExceptions) { this.suppressedExceptions = null; } afterSingletonCreation(beanName); } // 加入缓存 addSingleton(beanName, singletonObject); } return (singletonObject != NULL_OBJECT ? singletonObject : null); } }
在单例创建的前后通过回调方法做一些准备及处理 *** 作,真正获取单例bean的方法是在singletonFactory的getObject方法获取。在上述方法中主要做了如下处理
-
检查缓存是否已经加载过
-
若没有加载,则记录beanName的正在加载状态
-
加载单例前记录加载状态
看似beforeSingletonCreation方法是空实现,没有任何逻辑,但其实这个函数实现了记录加载状态的 *** 作。即通过this.singletonsCurrentlyInCreation.add(beanName)将当前正要创建的bean记录在缓存中,这样便可以对循环依赖进行检测
protected void beforeSingletonCreation(String beanName) { if (!this.inCreationCheckExclusions.contains(beanName) && !this.singletonsCurrentlyInCreation.add(beanName)) { throw new BeanCurrentlyInCreationException(beanName); } }
-
通过调用参数传入的ObjectFactory的getObject方法实例化bean
-
加载单例后的处理方法调用
当bean加载结束后需要移除缓存中对该bean的正在加载状态的记录
protected void afterSingletonCreation(String beanName) { if (!this.inCreationCheckExclusions.contains(beanName) && !this.singletonsCurrentlyInCreation.remove(beanName)) { throw new IllegalStateException("Singleton '" + beanName + "' isn't currently in creation"); } }
-
将结果记录至缓存并删除加载bean过程中所记录的各种辅助状态
protected void addSingleton(String beanName, Object singletonObject) { synchronized (this.singletonObjects) { this.singletonObjects.put(beanName, (singletonObject != null ? singletonObject : NULL_OBJECT)); this.singletonFactories.remove(beanName); this.earlySingletonObjects.remove(beanName); this.registeredSingletons.add(beanName); } }
-
返回处理结果
bean的加载逻辑其实是在传入的ObjectFactory类型的参数singletonFactory中定义。ObjectFactory的核心部分只是调用了createBean的方法
sharedInstance = getSingleton(beanName, new ObjectFactory
() { @Override public Object getObject() throws BeansException { try { return createBean(beanName, mbd, args); } catch (BeansException ex) { // Explicitly remove instance from singleton cache: It might have been put there // eagerly by the creation process, to allow for circular reference resolution. // Also remove any beans that received a temporary reference to the bean. destroySingleton(beanName); throw ex; } } });
进入createBean方法就正式开始进入创建bean的逻辑
protected Object createBean(final String beanName, final RootBeanDefinition mbd, final Object[] args) throws BeanCreationException { if (logger.isDebugEnabled()) { logger.debug("Creating instance of bean '" + beanName + "'"); } // 锁定class,根据设置的class属性或者根据className来解析Class resolveBeanClass(mbd, beanName); // 验证及准备覆盖的方法 try { mbd.prepareMethodOverrides(); } catch (BeanDefinitionValidationException ex) { throw new BeanDefinitionStoreException(mbd.getResourceDescription(), beanName, "Validation of method overrides failed", ex); } try { // 提供通过BeanPostProcessors返回代理替代真正实例机会 Object bean = resolveBeforeInstantiation(beanName, mbd); if (bean != null) { return bean; } } catch (Throwable ex) { throw new BeanCreationException(mbd.getResourceDescription(), beanName, "BeanPostProcessor before instantiation of bean failed", ex); } Object beanInstance = doCreateBean(beanName, mbd, args); if (logger.isDebugEnabled()) { logger.debug("Finished creating instance of bean '" + beanName + "'"); } return beanInstance; }
createBean方法完成的具体步骤和功能如下
-
根据设置的class属性或者根据className来解析Class
-
对override属性进行标记及验证
在Spring中没有override-method这样的配置,但在Spring配置中存在lookup-method和replace-method,这两个配置的加载是将配置统一放在BeanDefiniton中的methodOverrides属性中,这个函数的 *** 作就是针对这两个配置
-
应用初始化前的后处理器,解析指定bean是否存在初始化前的短路 *** 作
-
创建bean
AbstractBeanDefiniton中的prepareMethodOverrides方法如下
public void prepareMethodOverrides() throws BeanDefinitionValidationException { // Check that lookup methods exists. MethodOverrides methodOverrides = getMethodOverrides(); if (!methodOverrides.isEmpty()) { for (MethodOverride mo : methodOverrides.getOverrides()) { prepareMethodOverride(mo); } } } protected void prepareMethodOverride(MethodOverride mo) throws BeanDefinitionValidationException { // 获取对应类中对应方法名的个数 int count = ClassUtils.getMethodCountForName(getBeanClass(), mo.getMethodName()); if (count == 0) { throw new BeanDefinitionValidationException( "Invalid method override: no method with name '" + mo.getMethodName() + "' on class [" + getBeanClassName() + "]"); } else if (count == 1) { // 标记MethodOverride暂未被覆盖,避免参数类型检查的开箱 mo.setOverloaded(false); } }
Spring中lookup-method和replace-method两个配置会统一放在BeanDefinition的methodOverrides属性中,在bean实例化时如果检测到存在methodOverrides属性,会动态为当前bean生成代理并使用对应的拦截器为bean做增强处理
如果一个类中存在若干个重载方法,在函数调用及增强的时候还需要根据参数类型进行匹配,来最终确认当前调用的到底是哪个函数。但是,Spring将一部分匹配工作在这里完成,如当前类中的方法只有一个,那么就设置重载该方法没有被重载,后续调用时可以直接使用找到的方法,而无需进行方法的参数匹配验证,并且还可以提前对方法存在性进行验证
实例化的前置处理在真正调用doCreate方法创建bean的实例前使用resolveBeforeInstantiation(beanName, mbd)对BeanDefinition中的属性做前置处理。在真正逻辑实现前后留有处理函数也是可扩展的一种体现。在函数中还提供了一个短路判断
if(bean != null){ return bean; }
当经过前置处理后返回的结果如果不为空,那么会直接略过后续的Bean的创建而直接返回结果。我们熟悉的AOP功能就是基于这里的判断
protected Object resolveBeforeInstantiation(String beanName, RootBeanDefinition mbd) { Object bean = null; // 如果尚未被解析 if (!Boolean.FALSE.equals(mbd.beforeInstantiationResolved)) { // Make sure bean class is actually resolved at this point. if (mbd.hasBeanClass() && !mbd.isSynthetic() && hasInstantiationAwareBeanPostProcessors()) { bean = applyBeanPostProcessorsBeforeInstantiation(mbd.getBeanClass(), beanName); if (bean != null) { bean = applyBeanPostProcessorsAfterInitialization(bean, beanName); } } mbd.beforeInstantiationResolved = (bean != null); } return bean; }
此方法中两个方法applyBeanPostProcessorsBeforeInstantiation以及applyBeanPostProcessorsAfterInitialization,完成对所有InstantiationAwareBeanPostProcessor类型的后处理器方法postProcessBeforeIntantiation的调用和BeanPostProcessor的postProcessAfterInitialization方法的调用
实例化前的后处理器应用bean实例化前调用,即将AbstractBeanDefinition转换为BeanWrapper前的处理。给使用者修改Bean生成的机会
protected Object applyBeanPostProcessorsBeforeInstantiation(Class> beanClass, String beanName) throws BeansException { for (BeanPostProcessor bp : getBeanPostProcessors()) { if (bp instanceof InstantiationAwareBeanPostProcessor) { InstantiationAwareBeanPostProcessor ibp = (InstantiationAwareBeanPostProcessor) bp; Object result = ibp.postProcessBeforeInstantiation(beanClass, beanName); if (result != null) { return result; } } } return null; }实例化后的后处理器
Spring中的规则是在Bean初始化后尽可能保证将注册的后处理器的postProcessAfterInitializaiton方法应用到该Bean,如果返回的bean不为空,则不会再经历普通bean的常见过程,而是调用后处理器后返回,使用者可以在后处理器中对bean进行修改
@Override public Object applyBeanPostProcessorsAfterInitialization(Object existingBean, String beanName) throws BeansException { Object result = existingBean; for (BeanPostProcessor beanProcessor : getBeanPostProcessors()) { result = beanProcessor.postProcessAfterInitialization(result, beanName); if (result == null) { return result; } } return result; }循环依赖 循环依赖的概念
循环依赖是指两个或多个bean相互之间持有对方,比如CircleA引用CircleB,CircleB引用CircleC,CircleC引用CircleA,形成一个引用环
Spring如何解决循环依赖Spring容器循环依赖包括构造器循环依赖和setter循环依赖,以下定义了循环依赖
public class TestA { private TestB testB; public TestA(TestB testB){ this.testB = testB; } public TestB getTestB() { return testB; } public void setTestB(TestB testB) { this.testB = testB; } } public class TestB { private TestC testC; public TestB(TestC testC){ this.testC = testC; } public TestC getTestC() { return testC; } public void setTestC(TestC testC) { this.testC = testC; } } public class TestC { private TestA testA; public TestC(TestA testA){ this.testA = testA; } public TestA getTestA() { return testA; } public void setTestA(TestA testA) { this.testA = testA; } }构造器循环依赖
表示通过构造器注入构成的循环依赖,此依赖是无法解决,只能抛出BeanCurrentlyInCreationException异常表示循环依赖。如上TestA构造器创建时,需要去创建TestB,而通过TestB构造器创建TestB时,又需要调用TestC的构造器创建TestC,但TestC构造器又会调用TestA构造器,形成环,无法完成创建。
Spring容器将每一个正在创建的bean标识符放在正在创建bean的缓存中,bean标识符在创建过程中将一直保持在这个缓存中,如果在创建bean过程中发现自己已经在这个正在创建的bean的缓存中,将抛出BeanCurrentlyInCreationExcption异常表示循环依赖;对于创建完毕的bean将从正在创建bean缓存中清除掉
创建配置文件创建测试
@Test public void contextLoads() { BeanFactory beanFactory = new XmlBeanFactory(new ClassPathResource("ApplicationContext.xml")); MyTestBean bean = (MyTestBean) beanFactory.getBean("testA"); }
-
Spring容器创建"testA",首先去"当前正在创建bean缓存"查找是否当前bean正在创建,未发现,则继续准备其需要的构造器参数"testB",并将"testA"标识符放到"当前正在创建bean缓存"
-
Spring容器创建"testB",首先查看"当前正在创建bean缓存"是否能查到当前bean正在创建,没有发现,则继续准备需要的构造器参数"testC",并将"testB"标识符放到"当前正在创建bean缓存"
-
Spring容器创建"testC",首先查看"当前正在创建bean缓存"是否能查到当前bean,如果没有发现,继续准备需要的构造器参数"testA",并将"testC"标识符放到"当前正在创建bean缓存"
-
到此Spring容器去创建"testA" bean,发现该bean标识符在"当前正在创建bean缓存"中,则抛出BeanCurrentlyInCreationException
通过setter注入方式构成的循环依赖。对于setter注入构造的依赖是通过Spring容器提前暴露刚完成构造器注入但未完成其他步骤的bean来完成,而且只能解决单例作用域的bean循环依赖。通过提前暴露一个单例工厂方法,从而使得其它bean能引用到该bean
protected Object doCreateBean(final String beanName, final RootBeanDefinition mbd, final Object[] args) { // Instantiate the bean. BeanWrapper instanceWrapper = null; if (mbd.isSingleton()) { instanceWrapper = this.factoryBeanInstanceCache.remove(beanName); } if (instanceWrapper == null) { instanceWrapper = createBeanInstance(beanName, mbd, args); } final Object bean = (instanceWrapper != null ? instanceWrapper.getWrappedInstance() : null); Class> beanType = (instanceWrapper != null ? instanceWrapper.getWrappedClass() : null); // Allow post-processors to modify the merged bean definition. synchronized (mbd.postProcessingLock) { if (!mbd.postProcessed) { applyMergedBeanDefinitionPostProcessors(mbd, beanType, beanName); mbd.postProcessed = true; } } // Eagerly cache singletons to be able to resolve circular references // even when triggered by lifecycle interfaces like BeanFactoryAware. boolean earlySingletonExposure = (mbd.isSingleton() && this.allowCircularReferences && isSingletonCurrentlyInCreation(beanName)); if (earlySingletonExposure) { if (logger.isDebugEnabled()) { logger.debug("Eagerly caching bean '" + beanName + "' to allow for resolving potential circular references"); } // 提前暴露一个单例工厂 addSingletonFactory(beanName, new ObjectFactory() { @Override public Object getObject() throws BeansException { return getEarlyBeanReference(beanName, mbd, bean); } }); } // Initialize the bean instance. Object exposedObject = bean; try { populateBean(beanName, mbd, instanceWrapper); if (exposedObject != null) { exposedObject = initializeBean(beanName, exposedObject, mbd); } } catch (Throwable ex) { if (ex instanceof BeanCreationException && beanName.equals(((BeanCreationException) ex).getBeanName())) { throw (BeanCreationException) ex; } else { throw new BeanCreationException(mbd.getResourceDescription(), beanName, "Initialization of bean failed", ex); } } if (earlySingletonExposure) { Object earlySingletonReference = getSingleton(beanName, false); if (earlySingletonReference != null) { if (exposedObject == bean) { exposedObject = earlySingletonReference; } else if (!this.allowRawInjectionDespiteWrapping && hasDependentBean(beanName)) { String[] dependentBeans = getDependentBeans(beanName); Set actualDependentBeans = new linkedHashSet (dependentBeans.length); for (String dependentBean : dependentBeans) { if (!removeSingletonIfCreatedForTypeCheckOnly(dependentBean)) { actualDependentBeans.add(dependentBean); } } if (!actualDependentBeans.isEmpty()) { throw new BeanCurrentlyInCreationException(beanName, "Bean with name '" + beanName + "' has been injected into other beans [" + StringUtils.collectionToCommaDelimitedString(actualDependentBeans) + "] in its raw version as part of a circular reference, but has eventually been " + "wrapped. This means that said other beans do not use the final version of the " + "bean. This is often the result of over-eager type matching - consider using " + "'getBeanNamesOfType' with the 'allowEagerInit' flag turned off, for example."); } } } } // Register bean as disposable. try { registerDisposableBeanIfNecessary(beanName, bean, mbd); } catch (BeanDefinitionValidationException ex) { throw new BeanCreationException(mbd.getResourceDescription(), beanName, "Invalid destruction signature", ex); } return exposedObject; }
-
Spring容器创建单例"testA" bean,首先根据无参构造器创建bean,并暴露一个"ObjectFactory"用于返回一个提前暴露一个创建中的bean,并将"testA"标识符放到"当前正在创建bean缓存",然后进行setter注入"testB"
-
Spring容器创建单例"testB" bean,首先根据无参构造器创建bean,并暴露一个"ObjectFactory"用于返回一个提前暴露一个创建中的bean,并将"testB"标识符放到"当前正在创建bean缓存",然后setter注入"circle"
-
Spring容器创建单例"testC" bean,首先根据无参构造器创建bean,并暴露一个"ObjectFactory"用于返回一个提前暴露一个创建中的bean,并将"testC"标识符放到"当前正在创建bean缓存",然后进行setter注入"testA",由于提前暴露了"ObjectFactory"工厂,从而使用它返回一个提前暴露的创建中的bean
-
最后依赖注入"testB"和"testA",完成setter注入
对于其它作用域的bean,setter注入方式并不能解决循环依赖,只有单例bean才会提前暴露ObjectFactory。我们也可以通过setAllowCircularReferences(false)方法禁用循环引用
创建bean通过resolveBeforeInstantiation处理后,如果没有重写InstantitationAwareBeanPostProcessor的postProcessBeforeInstantitation方法并改变bean,则进入常规创建bean逻辑,常规bean创建逻辑在doCreateBean中完成
protected Object doCreateBean(final String beanName, final RootBeanDefinition mbd, final Object[] args) { // Instantiate the bean. BeanWrapper instanceWrapper = null; if (mbd.isSingleton()) { instanceWrapper = this.factoryBeanInstanceCache.remove(beanName); } if (instanceWrapper == null) { // 根据指定bean使用对应的策略创建新的实例,如:工厂方法、构造函数自动注入、简单初始化 instanceWrapper = createBeanInstance(beanName, mbd, args); } final Object bean = (instanceWrapper != null ? instanceWrapper.getWrappedInstance() : null); Class> beanType = (instanceWrapper != null ? instanceWrapper.getWrappedClass() : null); // Allow post-processors to modify the merged bean definition. synchronized (mbd.postProcessingLock) { if (!mbd.postProcessed) { // 调用MergedBeanDefinitionPostProcessor的方法 applyMergedBeanDefinitionPostProcessors(mbd, beanType, beanName); mbd.postProcessed = true; } } // 是否需要提前曝光:单例&允许循环依赖&当前bean正在创建中,检测循环依赖 boolean earlySingletonExposure = (mbd.isSingleton() && this.allowCircularReferences && isSingletonCurrentlyInCreation(beanName)); if (earlySingletonExposure) { if (logger.isDebugEnabled()) { logger.debug("Eagerly caching bean '" + beanName + "' to allow for resolving potential circular references"); } // 为避免后期循环依赖,在bean初始化完成前将创建实例的ObjectFactory加入工厂 addSingletonFactory(beanName, new ObjectFactory() { @Override public Object getObject() throws BeansException { // 对bean再一次依赖引用,主要应用SmartInstantiationAwareBeanPostProcessor,AOP就是在这里将advice动态织入bean中, // 若没有直接返回bean,不做任何处理 return getEarlyBeanReference(beanName, mbd, bean); } }); } // Initialize the bean instance. Object exposedObject = bean; try { // 对bean进行填充,将各个属性值注入,其中,可能存在依赖于其他bean的属性,会递归初始依赖bean populateBean(beanName, mbd, instanceWrapper); if (exposedObject != null) { // 调用初始化方法,如init-method exposedObject = initializeBean(beanName, exposedObject, mbd); } } catch (Throwable ex) { if (ex instanceof BeanCreationException && beanName.equals(((BeanCreationException) ex).getBeanName())) { throw (BeanCreationException) ex; } else { throw new BeanCreationException(mbd.getResourceDescription(), beanName, "Initialization of bean failed", ex); } } if (earlySingletonExposure) { Object earlySingletonReference = getSingleton(beanName, false); // earlySingletonReference 只有检测到有循环依赖的情况下才会不为空 if (earlySingletonReference != null) { // 如果exposedObject if (exposedObject == bean) { exposedObject = earlySingletonReference; } else if (!this.allowRawInjectionDespiteWrapping && hasDependentBean(beanName)) { String[] dependentBeans = getDependentBeans(beanName); Set actualDependentBeans = new linkedHashSet (dependentBeans.length); for (String dependentBean : dependentBeans) { // 检测依赖 if (!removeSingletonIfCreatedForTypeCheckOnly(dependentBean)) { actualDependentBeans.add(dependentBean); } } if (!actualDependentBeans.isEmpty()) { throw new BeanCurrentlyInCreationException(beanName, "Bean with name '" + beanName + "' has been injected into other beans [" + StringUtils.collectionToCommaDelimitedString(actualDependentBeans) + "] in its raw version as part of a circular reference, but has eventually been " + "wrapped. This means that said other beans do not use the final version of the " + "bean. This is often the result of over-eager type matching - consider using " + "'getBeanNamesOfType' with the 'allowEagerInit' flag turned off, for example."); } } } } // Register bean as disposable. try { // 根据scopse注册bean registerDisposableBeanIfNecessary(beanName, bean, mbd); } catch (BeanDefinitionValidationException ex) { throw new BeanCreationException(mbd.getResourceDescription(), beanName, "Invalid destruction signature", ex); } return exposedObject; }
整个函数的概要思路如下
-
如果是单例则需要首先清除缓存
-
实例化bean,将BeanDefinition转变为BeanWrapper。转换的大致过程如下
-
如果存在工厂方法则使用工厂方法进行初始化
-
一个类有多个构造函数,每个构造函数都有不同的参数,所以需要根据参数锁定构造函数并进行初始化
-
如果既不存在工厂方法也不存在带参数的构造函数,则使用默认的构造函数进行bean的实例化
-
-
MergedBeanDefinitionPostProcessor应用
- bean合并后的处理,Autowired注解正是通过此方法实现诸如类型的预解析
-
依赖处理
- 在Spring中对于循环依赖,会通过放入缓存中的ObjectFactory来创建实例,解决循环依赖的问题
-
属性填充,将所有属性填充至bean的实例中
-
循环依赖检查
- 在Spring中解决循环依赖只对单例有效,对prototype的bean,Spring没有好的解决办法,唯一要做的就是抛出异常。在这个步骤会检测已经加载的bean 是否已经出现依赖循环,并判断是否需要抛出异常
-
注册DisposableBean。如果配置了destroy-method,在这里需要注册便于之后销毁时调用
-
完成创建并返回
createBeanInstance完成bean实例的创建
protected BeanWrapper createBeanInstance(String beanName, RootBeanDefinition mbd, Object[] args) { // 解析class Class> beanClass = resolveBeanClass(mbd, beanName); if (beanClass != null && !Modifier.isPublic(beanClass.getModifiers()) && !mbd.isNonPublicAccessAllowed()) { throw new BeanCreationException(mbd.getResourceDescription(), beanName, "Bean class isn't public, and non-public access not allowed: " + beanClass.getName()); } // 如果工厂方法不为空则使用工厂方法初始化策略 if (mbd.getFactoryMethodName() != null) { return instantiateUsingFactoryMethod(beanName, mbd, args); } // Shortcut when re-creating the same bean... boolean resolved = false; boolean autowireNecessary = false; if (args == null) { synchronized (mbd.constructorArgumentLock) { // 一个类有多个构造函数,每个构造函数有不同的参数,所以调用前需要先根据参数锁定构造函数或对应的工厂方法 if (mbd.resolvedConstructorOrFactoryMethod != null) { resolved = true; autowireNecessary = mbd.constructorArgumentsResolved; } } } // 如果已经解析过则使用解析好的构造函数方法不需要再次锁定 if (resolved) { if (autowireNecessary) { // 构造函数自动注入 return autowireConstructor(beanName, mbd, null, null); } else { // 使用默认构造函数构造 return instantiateBean(beanName, mbd); } } // 需要根据参数解析构造函数 Constructor>[] ctors = determineConstructorsFromBeanPostProcessors(beanClass, beanName); if (ctors != null || mbd.getResolvedAutowireMode() == RootBeanDefinition.AUTOWIRE_ConSTRUCTOR || mbd.hasConstructorArgumentValues() || !ObjectUtils.isEmpty(args)) { // 构造函数自动注入 return autowireConstructor(beanName, mbd, ctors, args); } // 使用默认构造函数 return instantiateBean(beanName, mbd); }
-
如果在RootBeanDefinition中存在factoryMethodName属性,或者说在配置文件中配置了factory-method,那么Spring会尝试使用instantiateUsingFacotoryMethod (beanName, mbd, args)方法根据RootBeanDefiniton中的配置生成bean实例
-
解析构造函数并进行构造函数的实例化。一个bean中对应的类中可能会有多个构造函数,每个构造函数具有不同的参数,Spring根据参数及类型判断最终使用那个构造函数进行实例化。解析判断的过程是一个耗时的过程,Spring会缓存解析的成果,并放到RootBeanDefinition中的属性resolvedConstructorOrFactoryMethod中。对于已经解析过直接获取解析结果并进行构造函数实例化,对于未解析过则先解析再进行实例化,并缓存解析结果
-
autowireConstructor
对于实例的创建Spring分两种情况,一种是通用的实例化;另一种是带参数的实例化。带参数的实例化过程相当复杂,存在不确定性,需要在参数上做大量工作
public BeanWrapper autowireConstructor( final String beanName, final RootBeanDefinition mbd, Constructor>[] chosenCtors, final Object[] explicitArgs) { BeanWrapperImpl bw = new BeanWrapperImpl(); this.beanFactory.initBeanWrapper(bw); Constructor> constructorToUse = null; ArgumentsHolder argsHolderToUse = null; Object[] argsToUse = null; // explicitArgs通过getBean方法传入,如果getBean方法调用的时候指定方法参数那么直接使用 if (explicitArgs != null) { argsToUse = explicitArgs; } else { // 如果getBean方法没有指定则尝试从配置文件中解析 Object[] argsToResolve = null; // 尝试从缓存中获取 synchronized (mbd.constructorArgumentLock) { constructorToUse = (Constructor>) mbd.resolvedConstructorOrFactoryMethod; if (constructorToUse != null && mbd.constructorArgumentsResolved) { // 从缓存中获取 argsToUse = mbd.resolvedConstructorArguments; if (argsToUse == null) { // 配置的构造函数参数 argsToResolve = mbd.preparedConstructorArguments; } } } // 如果缓存中存在 if (argsToResolve != null) { // 解析参数类型,如果给定的构造函数A(int, int)则通过此方法后就会把配置中的("1", "1")转换为(1, 1)。缓存中的值可能是原始 // 值也可能是最终值 argsToUse = resolvePreparedArguments(beanName, mbd, bw, constructorToUse, argsToResolve); } } // 没有被缓存 if (constructorToUse == null) { // Need to resolve the constructor. boolean autowiring = (chosenCtors != null || mbd.getResolvedAutowireMode() == RootBeanDefinition.AUTOWIRE_CONSTRUCTOR); ConstructorArgumentValues resolvedValues = null; int minNrOfArgs; if (explicitArgs != null) { minNrOfArgs = explicitArgs.length; } else { // 提取配置文件中的构造函数参数 ConstructorArgumentValues cargs = mbd.getConstructorArgumentValues(); // 记录解析后的构造函数参数的值 resolvedValues = new ConstructorArgumentValues(); // 能解析到的参数个数 minNrOfArgs = resolveConstructorArguments(beanName, mbd, bw, cargs, resolvedValues); } // Take specified constructors, if any. Constructor>[] candidates = chosenCtors; if (candidates == null) { Class> beanClass = mbd.getBeanClass(); try { candidates = (mbd.isNonPublicAccessAllowed() ? beanClass.getDeclaredConstructors() : beanClass.getConstructors()); } catch (Throwable ex) { throw new BeanCreationException(mbd.getResourceDescription(), beanName, "Resolution of declared constructors on bean Class [" + beanClass.getName() + "] from ClassLoader [" + beanClass.getClassLoader() + "] failed", ex); } } // 排序给定的构造函数,public构造函数优先于非pulbic构造函数,参数多的构造函数优先参数少的构造函数 AutowireUtils.sortConstructors(candidates); int minTypeDiffWeight = Integer.MAX_VALUE; Set
> ambiguousConstructors = null; List causes = null; for (int i = 0; i < candidates.length; i++) { Constructor> candidate = candidates[i]; Class>[] paramTypes = candidate.getParameterTypes(); if (constructorToUse != null && argsToUse.length > paramTypes.length) { // 如果已经找到选用的构造函数或需要的参数个数小于当前的构造函数参数个数则终止,因为已经按照参数个数降序排列 break; } if (paramTypes.length < minNrOfArgs) { // 参数个数不相等 continue; } ArgumentsHolder argsHolder; if (resolvedValues != null) { // 有参数则根据值构造对应参数类型的参数 try { String[] paramNames = null; if (constructorPropertiesAnnotationAvailable) { // 注释上获取参数名称 paramNames = ConstructorPropertiesChecker.evaluateAnnotation(candidate, paramTypes.length); } if (paramNames == null) { // 获取参数名称探索器 ParameterNameDiscoverer pnd = this.beanFactory.getParameterNameDiscoverer(); if (pnd != null) { // 获取指定构造函数的参数名称 paramNames = pnd.getParameterNames(candidate); } } // 根据名称和数据类型创建参数持有者 argsHolder = createArgumentArray( beanName, mbd, resolvedValues, bw, paramTypes, paramNames, candidate, autowiring); } catch (UnsatisfiedDependencyException ex) { if (this.beanFactory.logger.isTraceEnabled()) { this.beanFactory.logger.trace( "Ignoring constructor [" + candidate + "] of bean '" + beanName + "': " + ex); } if (i == candidates.length - 1 && constructorToUse == null) { if (causes != null) { for (Exception cause : causes) { this.beanFactory.onSuppressedException(cause); } } if (Objects.isNull(customUserDetails) || Objects.isNull(customUserDetails.getTenantId())) { return null; } throw ex; } else { // Swallow and try next constructor. if (causes == null) { causes = new linkedList (); } causes.add(ex); continue; } } } else { // Explicit arguments given -> arguments length must match exactly. if (paramTypes.length != explicitArgs.length) { continue; } // 构造函数没有参数情况 argsHolder = new ArgumentsHolder(explicitArgs); } // 探测是否有不确定构造函数存在,例如不同构造函数的参数为父子关系 int typeDiffWeight = (mbd.isLenientConstructorResolution() ? argsHolder.getTypeDifferenceWeight(paramTypes) : argsHolder.getAssignabilityWeight(paramTypes)); // 如果代表这最接近的匹配则选择作为构造函数 if (typeDiffWeight < minTypeDiffWeight) { constructorToUse = candidate; argsHolderToUse = argsHolder; argsToUse = argsHolder.arguments; minTypeDiffWeight = typeDiffWeight; ambiguousConstructors = null; } else if (constructorToUse != null && typeDiffWeight == minTypeDiffWeight) { if (ambiguousConstructors == null) { ambiguousConstructors = new linkedHashSet >(); ambiguousConstructors.add(constructorToUse); } ambiguousConstructors.add(candidate); } } if (constructorToUse == null) { throw new BeanCreationException(mbd.getResourceDescription(), beanName, "Could not resolve matching constructor " + "(hint: specify index/type/name arguments for simple parameters to avoid type ambiguities)"); } else if (ambiguousConstructors != null && !mbd.isLenientConstructorResolution()) { throw new BeanCreationException(mbd.getResourceDescription(), beanName, "Ambiguous constructor matches found in bean '" + beanName + "' " + "(hint: specify index/type/name arguments for simple parameters to avoid type ambiguities): " + ambiguousConstructors); } if (explicitArgs == null) { // 将解析的构造函数加入缓存 argsHolderToUse.storeCache(mbd, constructorToUse); } } try { Object beanInstance; if (System.getSecurityManager() != null) { final Constructor> ctorToUse = constructorToUse; final Object[] argumentsToUse = argsToUse; beanInstance = AccessController.doPrivileged(new PrivilegedAction () { @Override public Object run() { return beanFactory.getInstantiationStrategy().instantiate( mbd, beanName, beanFactory, ctorToUse, argumentsToUse); } }, beanFactory.getAccessControlContext()); } else { beanInstance = this.beanFactory.getInstantiationStrategy().instantiate( mbd, beanName, this.beanFactory, constructorToUse, argsToUse); } // 将构造的实例加入BeanWrapper中 bw.setWrappedInstance(beanInstance); return bw; } catch (Throwable ex) { throw new BeanCreationException(mbd.getResourceDescription(), beanName, "Instantiation of bean failed", ex); } } (1)构造函数参数的确定
-
根据explicitArgs参数判断
如果传入的参数explicitArgs不为空,可以直接确定参数,explicitArgs参数是调用Bean时用户指定的,可通过BeanFactory类的如下方法调用getBean(String name, Object… args).在获取bean时,不但可以指定bean名称还可以指定bean所对应类的构造函数或工厂方法的方法参数,主要用于静态工厂方法调用
-
缓存中获取
如果之前已经分析过,构造函数参数已经记录在缓存中,则可以直接在缓存中获取。但缓存中存储的可能是参数的最终类型也可能是参数的初始类型,例如:构造函数参数要求的是int类型,但原始参数值可能是String类型的"1",即使从缓存中获取到参数,也需要经过类型转换器的过滤以确保参数类型与对应的构造函数参数类型完全对应 -
配置文件获取
如果不能根据传入的参数explicitArgs确定构造函数的参数也无法在缓存中获取,则只能进行一次分析。分析从获取配置文件中配置的构造函数信息开始,Spring中配置文件中的信息经过转换会解析到BeanDefinition实例中,即上述方法中的mbd参数,通过调用mbd.getConstructorArgumentValue()来获取配置的构造函数信息。有了配置中的信息便可以获取对应的参数信息了,获取参数值的信息包括直接指定值。例如:直接指定构造函数中某个值为原始类型String类型,或者是一个对其他bean的引用,这一处理委托给resolveConstructorArguments方法,并返回能解析到的参数个数
(2)构造函数确认
第一步根据构造参数已经确认,之后需要根据构造函数参数在所有构造函数中锁定对应的构造函数,判断的依据是参数个数是否匹配。在匹配之前需要对构造函数按public构造函数参数个数降序排列然后再按非public构造函数降序排列,这样能更快的查找到匹配的构造函数。配置文件并不是唯一限制使用参数位置索引的方式创建,同样支持指定参数名称进行设定参数值,如,这种情况需要首先确定构造函数中的参数名称.获取参数名称可以有两种方式,一种是通过注解的方式直接获取,另一种是使用Spring中提供的工具类ParameterNameDiscover来获取。构造函数、参数名称、参数类型、参数值都确定后可以锁定构造函数及转换对应的参数类型(3)根据确定的构造函数转换对应的参数类型
使用Spring提供的类型转换器或用户提供的自定义类型转换器进行转换(4)构造函数不确定性验证
有时即使构造函数、参数名称、参数类型、参数值都确定也不一定会直接锁定构造函数,不同构造函数的参数为父子关系,所以Spring在最后又做了一次验证(5)根据实例化策略以及得到的构造函数及构造函数参数实例化Bean
-
-instantiateBean
不带参数实例构造如下,直接调用实例化策略进行实例化 ``` protected BeanWrapper instantiateBean(final String beanName, final RootBeanDefinition mbd) { try { Object beanInstance; final BeanFactory parent = this; if (System.getSecurityManager() != null) { beanInstance = AccessController.doPrivileged(new PrivilegedAction
() { @Override public Object run() { return getInstantiationStrategy().instantiate(mbd, beanName, parent); } }, getAccessControlContext()); } else { beanInstance = getInstantiationStrategy().instantiate(mbd, beanName, parent); } BeanWrapper bw = new BeanWrapperImpl(beanInstance); initBeanWrapper(bw); return bw; } catch (Throwable ex) { throw new BeanCreationException(mbd.getResourceDescription(), beanName, "Instantiation of bean failed", ex); } } ``` -
实例化策略
经过上面的分析,已经得到了足以实例化的所有信息,可以使用最简单的反射方式来构造实例对象,但Spring却并没有如此// 有需要覆盖或动态替换的方法则使用cglib进行动态代理,在创建代理的同时可以方便的将动态方法织入 // 如果没有动态改变的方法,则直接使用反射 if (beanDefinition.getMethodOverrides().isEmpty()) { Constructor> constructorToUse; synchronized (beanDefinition.constructorArgumentLock) { constructorToUse = (Constructor>) beanDefinition.resolvedConstructorOrFactoryMethod; if (constructorToUse == null) { final Class> clazz = beanDefinition.getBeanClass(); if (clazz.isInterface()) { throw new BeanInstantiationException(clazz, "Specified class is an interface"); } try { if (System.getSecurityManager() != null) { constructorToUse = AccessController.doPrivileged(new PrivilegedExceptionAction
>() { @Override public Constructor> run() throws Exception { return clazz.getDeclaredConstructor((Class[]) null); } }); } else { constructorToUse = clazz.getDeclaredConstructor((Class[]) null); } beanDefinition.resolvedConstructorOrFactoryMethod = constructorToUse; } catch (Exception ex) { throw new BeanInstantiationException(clazz, "No default constructor found", ex); } } } return BeanUtils.instantiateClass(constructorToUse); } else { // Must generate CGLIB subclass. return instantiateWithMethodInjection(beanDefinition, beanName, owner); } public Object instantiate(Constructor> ctor, Object[] args) { Enhancer enhancer = new Enhancer(); enhancer.setSuperclass(this.beanDefinition.getBeanClass()); enhancer.setCallbackFilter(new CallbackFilterImpl()); enhancer.setCallbacks(new Callback[] { NoOp.INSTANCE, new LookupOverrideMethodInterceptor(), new ReplaceOverrideMethodInterceptor() }); return (ctor == null) ? enhancer.create() : enhancer.create(ctor.getParameterTypes(), args); } 首先会通过beanDefinition.getMethodOverrides()判断是否有覆盖或动态替换的方法,即用户是否维护replace或者lookup配置方法。如果没有则直接使用反射方法。如果有,则需要将replace或lookup方法切入进去,通过动态代理的方式增强代理方法
-
以下代码处理循环依赖问题
// Eagerly cache singletons to be able to resolve circular references // even when triggered by lifecycle interfaces like BeanFactoryAware. boolean earlySingletonExposure = (mbd.isSingleton() && this.allowCircularReferences && isSingletonCurrentlyInCreation(beanName)); if (earlySingletonExposure) { if (logger.isDebugEnabled()) { logger.debug("Eagerly caching bean '" + beanName + "' to allow for resolving potential circular references"); } // 避免后期循环依赖,可以在bean初始化前将创建实例的ObjectFacotory加入工厂 addSingletonFactory(beanName, new ObjectFactory() { @Override public Object getObject() throws BeansException { // 对bean再次依赖引用,主要应用SmartInstantiationAware BeanPostProcessor,AOP就是在这里将advice动态织入bena中,没有直接 // 返回bean,不做任何处理 return getEarlyBeanReference(beanName, mbd, bean); } }); }
Spring的循环依赖解决办法
-
earlySingletonExposure:是否需要提早曝光单例
-
mbd.isSingleton():是否为单例
-
this.allowCircularReference:是否允许循环依赖,在AbstractRefreshalbeApplicationContext中提供了设置函数
ClassPathXmlApplicationContext bf = new ClassPathXmlApplicationContext("aspectTest.xml"); bf.setAllowBeanDefinitionOverriding(false);
-
isSingletonCurrentlyInCreation(beanName):判断beanName是否在创建中,在Spring中,有一个专门的属性默认为DefualtSingletonBeanRegistry的singletonsCurrentlyInCreation来记录bean的加载状态,在bean开始创建前会将beanName记录在属性中,在bean创建结束后会将beanName从属性中移除
当bean为单例、允许循环依赖、bean正在创建则earlySingletonExposure为true,将执行addSingletonFactory
AB循环依赖中,A类包含属性类B,类B包含属性类A,初始化bean A的过程如下
在创建A的时候首先会记录类A所对应的beanName,并将beanA的创建工厂加入缓存中,在对A的属性填充也就是调用populate方法时会再一次对B进行递归创建,由于在B中同时存在A属性,因此实例化B的populate方法中又会再次初始化B,调用getBean(A),在这个方法中并不会直接去实例化A,而是先检测缓存中是否已经创建好对应的bean,或者已经创建好的ObjectFactory,此时对于ObjectFacotry我们早已经创建,所以不会向后执行,而是直接调用ObjectFacotry去创建A
addSingletonFactory(beanName, new ObjectFactory() { @Override public Object getObject() throws BeansException { // 对bean再一次依赖引用,主要应用SmartInstantiationAware BeanPostProcessor,其中我们熟知的AOP就是在这里将advice // 动态织入bean中,若没有则直接返回bean,不做任何处理 return getEarlyBeanReference(beanName, mbd, bean); } });
getEarlyBeanReference代码如下
protected Object getEarlyBeanReference(String beanName, RootBeanDefinition mbd, Object bean) { Object exposedObject = bean; if (bean != null && !mbd.isSynthetic() && hasInstantiationAwareBeanPostProcessors()) { for (BeanPostProcessor bp : getBeanPostProcessors()) { if (bp instanceof SmartInstantiationAwareBeanPostProcessor) { SmartInstantiationAwareBeanPostProcessor ibp = (SmartInstantiationAwareBeanPostProcessor) bp; exposedObject = ibp.getEarlyBeanReference(exposedObject, beanName); if (exposedObject == null) { return exposedObject; } } } } return exposedObject; }
在B中创建依赖A时通过ObjectFactory提供的实例化方法来中断A中的属性填充,使B中持有的A仅仅是刚刚初始化并没有填充任何属性的A,这个没有被填充任何属性的A正式我们开始创建初始化的A,当A完成初始化后B也能通通过持有的A访问,因为本身就是同一个
属性注入populateBean方法的主要功能就是属性填充
protected void populateBean(String beanName, RootBeanDefinition mbd, BeanWrapper bw) { PropertyValues pvs = mbd.getPropertyValues(); if (bw == null) { if (!pvs.isEmpty()) { throw new BeanCreationException( mbd.getResourceDescription(), beanName, "Cannot apply property values to null instance"); } else { // 没有可填充的属性 return; } } // 给InstantiatonAwareBeanPostProcessors最后一次机会在属性设置前改变bean boolean continueWithPropertyPopulation = true; if (!mbd.isSynthetic() && hasInstantiationAwareBeanPostProcessors()) { for (BeanPostProcessor bp : getBeanPostProcessors()) { if (bp instanceof InstantiationAwareBeanPostProcessor) { InstantiationAwareBeanPostProcessor ibp = (InstantiationAwareBeanPostProcessor) bp; // 是否继续填充bean if (!ibp.postProcessAfterInstantiation(bw.getWrappedInstance(), beanName)) { continueWithPropertyPopulation = false; break; } } } } // 如果后处理器停止填充命令则终止后续执行 if (!continueWithPropertyPopulation) { return; } if (mbd.getResolvedAutowireMode() == RootBeanDefinition.AUTOWIRE_BY_NAME || mbd.getResolvedAutowireMode() == RootBeanDefinition.AUTOWIRE_BY_TYPE) { MutablePropertyValues newPvs = new MutablePropertyValues(pvs); // 根据名称自动注入 if (mbd.getResolvedAutowireMode() == RootBeanDefinition.AUTOWIRE_BY_NAME) { autowireByName(beanName, mbd, bw, newPvs); } // 根据类型自动注入 if (mbd.getResolvedAutowireMode() == RootBeanDefinition.AUTOWIRE_BY_TYPE) { autowireByType(beanName, mbd, bw, newPvs); } pvs = newPvs; } // 后置处理器已经初始化 boolean hasInstAwareBpps = hasInstantiationAwareBeanPostProcessors(); // 需要依赖检查 boolean needsDepCheck = (mbd.getDependencyCheck() != RootBeanDefinition.DEPENDENCY_CHECK_NONE); if (hasInstAwareBpps || needsDepCheck) { PropertyDescriptor[] filteredPds = filterPropertyDescriptorsForDependencyCheck(bw, mbd.allowCaching); if (hasInstAwareBpps) { for (BeanPostProcessor bp : getBeanPostProcessors()) { if (bp instanceof InstantiationAwareBeanPostProcessor) { InstantiationAwareBeanPostProcessor ibp = (InstantiationAwareBeanPostProcessor) bp; // 对所有需要依赖检查的属性进行后处理 pvs = ibp.postProcessPropertyValues(pvs, filteredPds, bw.getWrappedInstance(), beanName); if (pvs == null) { return; } } } } if (needsDepCheck) { // 依赖检查,对应depends-on属性,3.0已弃用 checkDependencies(beanName, mbd, filteredPds, pvs); } } // 将属性应用到bean中 applyPropertyValues(beanName, mbd, bw, pvs); }
在populateBean函数中提供如下处理流程
-
InstantiationAwareBeanPostProcessor处理器的postProcessAfterInstantiation函数应用,此函数可以控制程序是否继续进行属性填充
-
根据注入类型,提取依赖的bean,并统一存入PropertyValues中
-
应用InstantiationAwareBeanPostProcessor处理器的postProcessPropertyValues方法,对属性获取完毕填充前对属性的再次处理,典型应用是RequiredAnnotationBeanPostProcessor类中对属性的验证
-
调用applyPropertyValues方法将所有PropertyValues中的属性填充至BeanWrapper中
protected void applyPropertyValues(String beanName, BeanDefinition mbd, BeanWrapper bw, PropertyValues pvs) { if (pvs.isEmpty()) { return; } if (System.getSecurityManager() != null && bw instanceof BeanWrapperImpl) { ((BeanWrapperImpl) bw).setSecurityContext(getAccessControlContext()); } MutablePropertyValues mpvs = null; List
original; if (pvs instanceof MutablePropertyValues) { mpvs = (MutablePropertyValues) pvs; if (mpvs.isConverted()) { // Shortcut: use the pre-converted values as-is. try { bw.setPropertyValues(mpvs); return; } catch (BeansException ex) { throw new BeanCreationException( mbd.getResourceDescription(), beanName, "Error setting property values", ex); } } original = mpvs.getPropertyValueList(); } else { original = Arrays.asList(pvs.getPropertyValues()); } TypeConverter converter = getCustomTypeConverter(); if (converter == null) { converter = bw; } BeanDefinitionValueResolver valueResolver = new BeanDefinitionValueResolver(this, beanName, mbd, converter); // Create a deep copy, resolving any references for values. List deepCopy = new ArrayList<>(original.size()); boolean resolveNecessary = false; for (PropertyValue pv : original) { if (pv.isConverted()) { deepCopy.add(pv); } else { String propertyName = pv.getName(); Object originalValue = pv.getValue(); if (originalValue == AutowiredPropertyMarker.INSTANCE) { Method writeMethod = bw.getPropertyDescriptor(propertyName).getWriteMethod(); if (writeMethod == null) { throw new IllegalArgumentException("Autowire marker for property without write method: " + pv); } originalValue = new DependencyDescriptor(new MethodParameter(writeMethod, 0), true); } Object resolvedValue = valueResolver.resolvevalueIfNecessary(pv, originalValue); Object convertedValue = resolvedValue; boolean convertible = bw.isWritableProperty(propertyName) && !PropertyAccessorUtils.isNestedOrIndexedProperty(propertyName); if (convertible) { convertedValue = convertForProperty(resolvedValue, propertyName, bw, converter); } // Possibly store converted value in merged bean definition, // in order to avoid re-conversion for every created bean instance. if (resolvedValue == originalValue) { if (convertible) { pv.setConvertedValue(convertedValue); } deepCopy.add(pv); } else if (convertible && originalValue instanceof TypedStringValue && !((TypedStringValue) originalValue).isDynamic() && !(convertedValue instanceof Collection || ObjectUtils.isArray(convertedValue))) { pv.setConvertedValue(convertedValue); deepCopy.add(pv); } else { resolveNecessary = true; deepCopy.add(new PropertyValue(pv, convertedValue)); } } } if (mpvs != null && !resolveNecessary) { mpvs.setConverted(); } // Set our (possibly massaged) deep copy. try { bw.setPropertyValues(new MutablePropertyValues(deepCopy)); } catch (BeansException ex) { throw new BeanCreationException( mbd.getResourceDescription(), beanName, "Error setting property values", ex); } } -
如果pvs的类型为MutablePropertyValues,则将pvs赋值给mpvs
-
如果mpvs中的值已经被转换为对应的类型那么可以直接设置到beanwapper中
-
调用mpvs.getPropertyValueList()将propertyValue集合赋值给original
-
如果pvs的类型不为MutablePropertyValues,则获取pvs中propertyValueList属性的第一个值赋值给original
-
获取用户自定义类型转换器,如果没有则将bw赋值给类型转换器converter
-
创建解析器
-
遍历属性,将属性转换为对应类的对应属性的类型
-
根据注入类型是是通过名称注入还是通过类型注入,提取依赖bean,并统一存入PropertyValues中
protected void autowireByName( String beanName, AbstractBeanDefinition mbd, BeanWrapper bw, MutablePropertyValues pvs) { // 寻找bw中需要依赖注入的属性 String[] propertyNames = unsatisfiedNonSimpleProperties(mbd, bw); for (String propertyName : propertyNames) { if (containsBean(propertyName)) { // 递归初始化相关bean Object bean = getBean(propertyName); pvs.add(propertyName, bean); // 注册依赖 registerDependentBean(propertyName, beanName); if (logger.isDebugEnabled()) { logger.debug("Added autowiring by name from bean name '" + beanName + "' via property '" + propertyName + "' to bean named '" + propertyName + "'"); } } else { if (logger.isTraceEnabled()) { logger.trace("Not autowiring property '" + propertyName + "' of bean '" + beanName + "' by name: no matching bean found"); } } } }
在使用@Autowired方法注入bean时,在传入参数pvs中找出已经加载的bean,并递归实例化,进而加入到pvs中
autowireByTypeprotected void autowireByType( String beanName, AbstractBeanDefinition mbd, BeanWrapper bw, MutablePropertyValues pvs) { TypeConverter converter = getCustomTypeConverter(); if (converter == null) { converter = bw; } SetautowiredBeanNames = new linkedHashSet (4); // 寻找bw中需要依赖注入的属性 String[] propertyNames = unsatisfiedNonSimpleProperties(mbd, bw); for (String propertyName : propertyNames) { try { PropertyDescriptor pd = bw.getPropertyDescriptor(propertyName); // Don't try autowiring by type for type Object: never makes sense, // even if it technically is a unsatisfied, non-simple property. if (!Object.class.equals(pd.getPropertyType())) { // 获取指定属性的set方法 MethodParameter methodParam = BeanUtils.getWriteMethodParameter(pd); // Do not allow eager init for type matching in case of a prioritized post-processor. boolean eager = !PriorityOrdered.class.isAssignableFrom(bw.getWrappedClass()); DependencyDescriptor desc = new AutowireByTypeDependencyDescriptor(methodParam, eager); // 解析指定beanName的属性所匹配的值,并把解析到的属性名称存储在autowiredBeanNames中,当属性存在多个封装bean时如: // @Autowired private List aList; 将会找到所有匹配A类型的bean并将其注入 Object autowiredArgument = resolveDependency(desc, beanName, autowiredBeanNames, converter); if (autowiredArgument != null) { pvs.add(propertyName, autowiredArgument); } for (String autowiredBeanName : autowiredBeanNames) { // 注册依赖 registerDependentBean(autowiredBeanName, beanName); if (logger.isDebugEnabled()) { logger.debug("Autowiring by type from bean name '" + beanName + "' via property '" + propertyName + "' to bean named '" + autowiredBeanName + "'"); } } autowiredBeanNames.clear(); } } catch (BeansException ex) { throw new UnsatisfiedDependencyException(mbd.getResourceDescription(), beanName, propertyName, ex); } } }
根据名称自动匹配的第一步就是寻找bw中需要依赖注入的属性,同样根据类型自动匹配的实现第一步也是寻找bw中需要依赖注入的属性,之后遍历这些属性并寻找类型匹配的bean,最复杂的就是寻找类型匹配的bean。Spring中提供了对集合类型注入支持,示例如下
@Autowired private Listtests;
Spring会把所有与Test匹配的类型注入到tests属性中,也正因为如此,在autowireByType函数中,新建局部遍历autowiredBeanNames,用于存储所有依赖的bean,如果对于非集合类的属性注入来说,此属性并无用处
对于寻找类型匹配的逻辑实现封装在resolveDependency函数中
public Object resolveDependency(DependencyDescriptor descriptor, @Nullable String requestingBeanName, @Nullable SetautowiredBeanNames, @Nullable TypeConverter typeConverter) throws BeansException { descriptor.initParameterNameDiscovery(getParameterNameDiscoverer()); if (Optional.class == descriptor.getDependencyType()) { return createOptionalDependency(descriptor, requestingBeanName); } else if (ObjectFactory.class == descriptor.getDependencyType() || ObjectProvider.class == descriptor.getDependencyType()) { return new DependencyObjectProvider(descriptor, requestingBeanName); } else if (javaxInjectProviderClass == descriptor.getDependencyType()) { return new Jsr330Factory().createDependencyProvider(descriptor, requestingBeanName); } else { Object result = getAutowireCandidateResolver().getLazyResolutionProxyIfNecessary( descriptor, requestingBeanName); if (result == null) { result = doResolveDependency(descriptor, requestingBeanName, autowiredBeanNames, typeConverter); } return result; } }
此方法主要完成如下 *** 作
-
初始化参数名称发现解析器,getParameterNameDiscoverer方法将获取参数名称发现解析器
-
判断依赖的bean类型是不是Optional类型,如果是则调用createOptionalDependency方法
private Optional> createOptionalDependency( DependencyDescriptor descriptor, @Nullable String beanName, final Object... args) { DependencyDescriptor descriptorToUse = new NestedDependencyDescriptor(descriptor) { @Override public boolean isRequired() { return false; } @Override public Object resolveCandidate(String beanName, Class> requiredType, BeanFactory beanFactory) { return (!ObjectUtils.isEmpty(args) ? beanFactory.getBean(beanName, args) : super.resolveCandidate(beanName, requiredType, beanFactory)); } }; Object result = doResolveDependency(descriptorToUse, beanName, null, null); return (result instanceof Optional ? (Optional>) result : Optional.ofNullable(result)); }
-
创建NestedDependencyDescriptor实例,重写isRequired方法,此方法返回false;重写resolveCandidate方法
-
调用doResolveDependency,传入上一步创建的实例descriptorToUse,bean名称,获取依赖的bean
-
如果返回的bean是Optional的实例对象,则直接返回,否则调用Optional.ofNullable并返回
-
-
判断依赖的bean类型是不是ObjectFactory类型或ObjectProvider类型,如果是则创建DependencyObjectProvider,传入descriptor、requestingBeanName
public DependencyObjectProvider(DependencyDescriptor descriptor, @Nullable String beanName) { this.descriptor = new NestedDependencyDescriptor(descriptor); this.optional = (this.descriptor.getDependencyType() == Optional.class); this.beanName = beanName; }
- 可以看见上面创建DependencyObjectProvider时,首先创建NestedDependencyDescriptor初始化descriptor属性,之后的逻辑都相当简单
-
处理javaxInjectProviderClass类注入特殊情况
-
上述处理判断处理都是对特殊类型依赖bean的处理逻辑,接下来将进行通用逻辑处理。首先调用getAutowireCandidateResolver方法获取自动装配解析器,然后调用其getLazyResolutionProxyIfNecessary方法。默认自动装配解析器是SimpleAutowireCandidateResolver,其getLazyResolutionProxyIfNecessary方法返回null。其另一个实现类ContextAnnotationAutowireCandidateResolver中,getLazyResolutionProxyIfNecessary方法首先会判断是否使用@Lazy注解,如果使用则返回懒加载代理工厂,否则返回空
-
如果上步返回的空,则调用doResolveDependency执行正则的依赖解析
总结:resolveDependency方法其实并没有真正进行依赖解析,只是做了各种依赖类型的处理,真正进行依赖解析的方法是doResolveDependency方法。
接下来我们重点分析一下doResolveDependency方法的实现。Spring方法在命名上总是将实际处理的方法以do开头
@Nullable public Object doResolveDependency(DependencyDescriptor descriptor, @Nullable String beanName, @Nullable SetautowiredBeanNames, @Nullable TypeConverter typeConverter) throws BeansException { InjectionPoint previousInjectionPoint = ConstructorResolver.setCurrentInjectionPoint(descriptor); try { Object shortcut = descriptor.resolveShortcut(this); if (shortcut != null) { return shortcut; } Class> type = descriptor.getDependencyType(); // 用于支持Spring中新增的注解@Value Object value = getAutowireCandidateResolver().getSuggestedValue(descriptor); if (value != null) { if (value instanceof String) { String strVal = resolveEmbeddedValue((String) value); BeanDefinition bd = (beanName != null && containsBean(beanName) ? getMergedBeanDefinition(beanName) : null); value = evaluateBeanDefinitionString(strVal, bd); } TypeConverter converter = (typeConverter != null ? typeConverter : getTypeConverter()); try { return converter.convertIfNecessary(value, type, descriptor.getTypeDescriptor()); } catch (UnsupportedOperationException ex) { // A custom TypeConverter which does not support TypeDescriptor resolution... return (descriptor.getField() != null ? converter.convertIfNecessary(value, type, descriptor.getField()) : converter.convertIfNecessary(value, type, descriptor.getMethodParameter())); } } Object multipleBeans = resolveMultipleBeans(descriptor, beanName, autowiredBeanNames, typeConverter); if (multipleBeans != null) { return multipleBeans; } // 查找与所需类型匹配的 bean 实例,key为bean名称、value为实例化的bean Map matchingBeans = findAutowireCandidates(beanName, type, descriptor); if (matchingBeans.isEmpty()) { // 如果autowire的require属性为true而找到的匹配项却为空则抛出异常 if (isRequired(descriptor)) { raiseNoMatchingBeanFound(type, descriptor.getResolvableType(), descriptor); } return null; } String autowiredBeanName; Object instanceCandidate; if (matchingBeans.size() > 1) { autowiredBeanName = determineAutowireCandidate(matchingBeans, descriptor); if (autowiredBeanName == null) { if (isRequired(descriptor) || !indicatesMultipleBeans(type)) { return descriptor.resolveNotUnique(descriptor.getResolvableType(), matchingBeans); } else { // In case of an optional Collection/Map, silently ignore a non-unique case: // possibly it was meant to be an empty collection of multiple regular beans // (before 4.3 in particular when we didn't even look for collection beans). return null; } } instanceCandidate = matchingBeans.get(autowiredBeanName); } else { // We have exactly one match. Map.Entry entry = matchingBeans.entrySet().iterator().next(); autowiredBeanName = entry.getKey(); instanceCandidate = entry.getValue(); } if (autowiredBeanNames != null) { autowiredBeanNames.add(autowiredBeanName); } if (instanceCandidate instanceof Class) { instanceCandidate = descriptor.resolveCandidate(autowiredBeanName, type, this); } Object result = instanceCandidate; if (result instanceof NullBean) { if (isRequired(descriptor)) { raiseNoMatchingBeanFound(type, descriptor.getResolvableType(), descriptor); } result = null; } if (!ClassUtils.isAssignablevalue(type, result)) { throw new BeanNotOfRequiredTypeException(autowiredBeanName, type, instanceCandidate.getClass()); } return result; } finally { ConstructorResolver.setCurrentInjectionPoint(previousInjectionPoint); } } protected Map findAutowireCandidates( @Nullable String beanName, Class> requiredType, DependencyDescriptor descriptor) { // 获取给定类型的所有 bean 名称,包括在祖先工厂中定义的名称 String[] candidateNames = BeanFactoryUtils.beanNamesForTypeIncludingAncestors( this, requiredType, true, descriptor.isEager()); Map result = CollectionUtils.newlinkedHashMap(candidateNames.length); // 循环已经解析的依赖缓存 for (Map.Entry , Object> classObjectEntry : this.resolvableDependencies.entrySet()) { // 获取类型 Class> autowiringType = classObjectEntry.getKey(); // 检查类型是否是所需要解析类型相同或是其超类或超接口 if (autowiringType.isAssignableFrom(requiredType)) { // 获取类型对应的bean Object autowiringValue = classObjectEntry.getValue(); // 如果此缓存类型的bean是BeanFactory类型,则需要进行一步判断,是否为接口类型,如果是,则构造其代理类返回; // 如果是否,则直接调用getObject方法返回。对于非BeanFactory类型,直接返回 autowiringValue = AutowireUtils.resolveAutowiringValue(autowiringValue, requiredType); // 判断autowiringValue是否是与请求类型是兼容的 if (requiredType.isInstance(autowiringValue)) { // 将类名与对应bean放入返回值map中 result.put(ObjectUtils.identityToString(autowiringValue), autowiringValue); break; } } } // 循环获取bean的名称 for (String candidate : candidateNames) { // 判断如果不是自引用并且是否是候选注入对象 if (!isSelfReference(beanName, candidate) && isAutowireCandidate(candidate, descriptor)) { // 向result候选映射目录中添加bean名称与对应实例的映射 addCandidateEntry(result, candidate, descriptor, requiredType); } } if (result.isEmpty()) { boolean multiple = indicatesMultipleBeans(requiredType); // Consider fallback matches if the first pass failed to find anything... DependencyDescriptor fallbackDescriptor = descriptor.forFallbackMatch(); for (String candidate : candidateNames) { if (!isSelfReference(beanName, candidate) && isAutowireCandidate(candidate, fallbackDescriptor) && (!multiple || getAutowireCandidateResolver().hasQualifier(descriptor))) { addCandidateEntry(result, candidate, descriptor, requiredType); } } if (result.isEmpty() && !multiple) { // Consider self references as a final pass... // but in the case of a dependency collection, not the very same bean itself. for (String candidate : candidateNames) { if (isSelfReference(beanName, candidate) && (!(descriptor instanceof MultiElementDescriptor) || !beanName.equals(candidate)) && isAutowireCandidate(candidate, fallbackDescriptor)) { addCandidateEntry(result, candidate, descriptor, requiredType); } } } } return result; }
此方法主要完成如下 *** 作:
-
设置当前注入点到线程变量中,并返回前一个注入点
-
快捷方式解析依赖的bean
-
解析是否为依赖项设置了默认值。getAutowireCandidateResolver方法返回AutowireCandidateResolver对象,默认实现是SimpleAutowireCandidateResolver,其getSuggestedValue方法直接返回空;另一个实现是QualifierAnnotationAutowireCandidateResolver,其getSuggestedValue方法会解析依赖的bean上的注解,获取默认值注解指定的值。具体实现类关系如下图
-
如果上步解析出来value不为空,则进一步解析,当value为String类型,则调用resolveEmbeddedValue方法解析具体值,如果有类似@Value("${spring.application.name:hrds-qa}")这样的注解,将查看是否配置spring.application.name属性值,如果有设置值使用具体设置的值,如果没有则使用默认值。之后将解析的value转换为依赖属性的类型并返回
-
如果依赖bean属性是集合性质,则通过resolveMultipleBeans方法解析并返回
-
调用findAutowireCandidates方法,查找与依赖属性类型相同的bean实例
-
如果上一步解析出的bean为空,并且改并依赖是必须的,则抛出NoSuchBeanDefinitionException异常
-
如果匹配的bean超过一,则根据@Primary 和@Priority查找最匹配的bean
-
记录自动注入的bean名称到autowiredBeanNames,并返回解析出的依赖的bean的实例
在xml中配置bean时有一个init-method属性,这个属性作用是bean实例化前调用init-method指定的方法来根据用户业务进行相应的实例化。Spring中完成bean实例化,并且进行属性的填充,之后紧接着便开始调用用户设定的初始化方法
protected Object initializeBean(String beanName, Object bean, @Nullable RootBeanDefinition mbd) { if (System.getSecurityManager() != null) { AccessController.doPrivileged((PrivilegedAction) () -> { invokeAwareMethods(beanName, bean); return null; }, getAccessControlContext()); } else { invokeAwareMethods(beanName, bean); } Object wrappedBean = bean; if (mbd == null || !mbd.isSynthetic()) { wrappedBean = applyBeanPostProcessorsBeforeInitialization(wrappedBean, beanName); } try { invokeInitMethods(beanName, wrappedBean, mbd); } catch (Throwable ex) { throw new BeanCreationException( (mbd != null ? mbd.getResourceDescription() : null), beanName, "Invocation of init method failed", ex); } if (mbd == null || !mbd.isSynthetic()) { wrappedBean = applyBeanPostProcessorsAfterInitialization(wrappedBean, beanName); } return wrappedBean; }
-
调用invokeAwareMethods方法对特殊的bean处理:Aware、BeanNameAware、BeanClassLoaderAware、BeanFactoryAware
-
调用applyBeanPostProcessorsAfterInitialization方法,执行初始化前的后处理器,即实现BeanPostProcessor接口的类的postProcessBeforeInitialization方法
-
调用invokeInitMethods方法执行用户自定义init方法,用户可以实现InitializingBean方法,也可以在xml中通过init-method方法指定
-
调用applyBeanPostProcessorsAfterInitialization方法,执行初始化后的后处理器,即实现BeanPostProcessor接口的类的postProcessAfterInitialization
Spring中提供一些Aware相关接口,比如BeanFactoryAware、ApplicationContextAware、ResourceLoaderAware、ServletContextAware等,实现这些Aware接口的bean在初始化后,可以获取一些相对应的资源。例如实现BeanFactoryAware的bean初始化后,Spring容器将会注入BeanFactory的实例,而实现ApplicationContextAware的bean,在bean初始化后,将会被注入ApplicationContext实例
package org.aim.spring.circle; import org.springframework.beans.BeansException; import org.springframework.beans.factory.BeanFactory; import org.springframework.beans.factory.BeanFactoryAware; import org.springframework.beans.factory.InitializingBean; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.beans.factory.annotation.Qualifier; import org.springframework.beans.factory.annotation.Value; import org.springframework.beans.factory.config.BeanPostProcessor; import org.springframework.context.ApplicationContext; import org.springframework.context.ApplicationContextAware; import org.springframework.stereotype.Component; public class TestA implements BeanPostProcessor, InitializingBean, BeanFactoryAware, ApplicationContextAware { // @Autowired private TestB testB; @Value("${spring.application.name:hrds-qa}") private String applicationName; // public TestA(TestB testB){ // this.testB = testB; // } @Override public Object postProcessBeforeInitialization(Object bean, String beanName) { return bean; } @Override public Object postProcessAfterInitialization(Object bean, String beanName) { return bean; } @Override public void afterPropertiesSet() throws Exception { } @Override public void setBeanFactory(BeanFactory beanFactory) throws BeansException { } @Override public void setApplicationContext(ApplicationContext applicationContext) throws BeansException { } public TestB getTestB() { return testB; } public void setTestB(TestB testB) { this.testB = testB; } public String getApplicationName() { return applicationName; } public void setApplicationName(String applicationName) { this.applicationName = applicationName; } }
那么这些Aware是在哪里生效的呢?我们看一下initializeBean方法中调用的invokeAwareMethods方法
private void invokeAwareMethods(String beanName, Object bean) { if (bean instanceof Aware) { if (bean instanceof BeanNameAware) { ((BeanNameAware) bean).setBeanName(beanName); } if (bean instanceof BeanClassLoaderAware) { ClassLoader bcl = getBeanClassLoader(); if (bcl != null) { ((BeanClassLoaderAware) bean).setBeanClassLoader(bcl); } } if (bean instanceof BeanFactoryAware) { ((BeanFactoryAware) bean).setBeanFactory(AbstractAutowireCapableBeanFactory.this); } } }
该方法判断bean的类型,并调用相应类型bean的方法
处理器的应用BeanPostProcessor是Spring开发框架中的一个必不可少的亮点,用户可以有机会去更改或扩展Spring,除了BeanPostProcessor外还有很多其他的PostProcessor,
大部分都是基于BeanPostProcessor。在执行用户的初始化方法前后,分别会调用BeanPostProcessor的postProcessBeforeInitialization方法和postProcessAfterInitialization方法
用户设置自己的初始化方法除在xml配置中通过init-method方法指定,也可以通过实现InitializingBean接口实现,并在afterPropertiesSet方法中实现自己的逻辑通过init-method方法指定的初始化方法以及实现InitializingBean接口的初始化方法都是在bean初始化时执行,先执行afterPropertiesSet方法后执行init-method方法指定的初始化方法
protected void invokeInitMethods(String beanName, Object bean, @Nullable RootBeanDefinition mbd) throws Throwable { boolean isInitializingBean = (bean instanceof InitializingBean); if (isInitializingBean && (mbd == null || !mbd.isExternallyManagedInitMethod("afterPropertiesSet"))) { if (logger.isTraceEnabled()) { logger.trace("Invoking afterPropertiesSet() on bean with name '" + beanName + "'"); } if (System.getSecurityManager() != null) { try { AccessController.doPrivileged((PrivilegedExceptionAction注册DisposableBean) () -> { ((InitializingBean) bean).afterPropertiesSet(); return null; }, getAccessControlContext()); } catch (PrivilegedActionException pae) { throw pae.getException(); } } else { ((InitializingBean) bean).afterPropertiesSet(); } } if (mbd != null && bean.getClass() != NullBean.class) { String initMethodName = mbd.getInitMethodName(); if (StringUtils.hasLength(initMethodName) && !(isInitializingBean && "afterPropertiesSet".equals(initMethodName)) && !mbd.isExternallyManagedInitMethod(initMethodName)) { invokeCustomInitMethod(beanName, bean, mbd); } } }
Spring不但提供了对初始化方法的扩展入口,同样提供了销毁方法的扩展入口,对销毁方法的扩展,除了在xml配置bean时通过destroy-method指定外,用户也可以实现DestructionAwareBeanPostProcessor接口.Spring在registerDisposableBeanIfNecessary方法中进行处理
protected void registerDisposableBeanIfNecessary(String beanName, Object bean, RootBeanDefinition mbd) { AccessControlContext acc = (System.getSecurityManager() != null ? getAccessControlContext() : null); if (!mbd.isPrototype() && requiresDestruction(bean, mbd)) { if (mbd.isSingleton()) { // Register a DisposableBean implementation that performs all destruction // work for the given bean: DestructionAwareBeanPostProcessors, // DisposableBean interface, custom destroy method. registerDisposableBean(beanName, new DisposableBeanAdapter( bean, beanName, mbd, getBeanPostProcessorCache().destructionAware, acc)); } else { // A bean with a custom scope... Scope scope = this.scopes.get(mbd.getScope()); if (scope == null) { throw new IllegalStateException("No Scope registered for scope name '" + mbd.getScope() + "'"); } scope.registerDestructionCallback(beanName, new DisposableBeanAdapter( bean, beanName, mbd, getBeanPostProcessorCache().destructionAware, acc)); } } }
-
首先判断作用域及是否开启需要销毁时进行处理
-
如果是则进一步判断是不是单例,如果是则进行注册即缓存到disposableBeans属性中
-
如果不是单例,则获取作用域对象调用其registerDestructionCallback方法
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)