Flink消费Kafka插入ClickHouse实现百亿秒级OLAP

Flink消费Kafka插入ClickHouse实现百亿秒级OLAP,第1张

Flink消费Kafka插入ClickHouse实现百亿秒级OLAP 一、数据写入ClickHouse的几种方式(Java版) 1、第三方集成库:flink-clickhouse-sink 点我进官网
  • 版本限制:

    flinkflink-clickhouse-sink1.3.*1.0.01.9.*1.3.1
  • Maven依赖

    
      ru.ivi.opensource
      flink-clickhouse-sink
      1.3.1
    
    
  • Job类添加ClickHouse的环境配置

    ...
    ...
    ...
    Map sinkPro = new HashMap<>();
    //sink Properties
    sinkPro.put(ClickHouseClusterSettings.CLICKHOUSE_HOSTS, "sc.chproxy.bigdata.services.org:10000");
    
    // ClickHouse 本地写账号
    sinkPro.put(ClickHouseClusterSettings.CLICKHOUSE_USER, "your-user");
    sinkPro.put(ClickHouseClusterSettings.CLICKHOUSE_PASSWORD, "your-password");
    // sink common
    sinkPro.put(ClickHouseSinkConst.TIMEOUT_SEC, "10");
    sinkPro.put(ClickHouseSinkConst.NUM_WRITERS, "10");
    sinkPro.put(ClickHouseSinkConst.NUM_RETRIES, "3");
    sinkPro.put(ClickHouseSinkConst.QUEUE_MAX_CAPACITY, "1000000");
    sinkPro.put(ClickHouseSinkConst.IGNORING_CLICKHOUSE_SENDING_EXCEPTION_ENABLED, "false");
    sinkPro.put(ClickHouseSinkConst.FAILED_RECORDS_PATH, "d:/");//本地运行会在项目内生成名字为"d:"的文件夹,以存放运行失败明细记录
    
    // env - sinkPro
    ParameterTool parameters = ParameterTool.fromMap(sinkPro);
    env.getConfig().setGlobalJobParameters(parameters);
    
    // ClickHouseSink - sinkPro
    Properties props = new Properties();
    props.put(ClickHouseSinkConst.TARGET_TABLE_NAME, "database_1564.ch_zjk_test_local");
    props.put(ClickHouseSinkConst.MAX_BUFFER_SIZE, "10000");
    ClickHouseSink sink = new ClickHouseSink(props);
    env.setParallelism(1);//ClickHouse不支持高并发,本地测试建议加上,全局环境并行设为1
    ...
    ...
    ...
    env.addSource(new FlinkKafkaConsumer(PropertyUtil.get("your-topic"), new SimpleStringSchema(), sourcPro).setStartFromLatest()).uid("JobSource").name("JobSource").setParallelism(1)
    	//这个FlatMap算子是数据的ETL
    	.flatMap(new SourceFlatMapRep()).uid("SourceFlatMapRep").name("SourceFlatMapRep").setParallelism(2)
    	//这个算子是输出要插入的字段数据,封装成固定格式的字符串(圆括号包裹整体,单引包裹每个元素),例如-> ('zjk','22','csdn_note')
    	.flatMap(new OutFlatMap()).uid("OutFlatMap").name("OutFlatMap").setParallelism(1)
    	//输入到flink-clickhouse-sink的三方处理,自动发送给CK
    	.andSink(sink);
    env.execute("EventJob");
    
2、FlinkJDBC:flink-connector-jdbc

flink-connector-jdbc要求Flink版本为 1.11.0+

  • Maven依赖

    
    	org.apache.flink
    	flink-connector-jdbc_${scala.binary.version}
    	${flink.version}
    
    
  • Job类

    //不需要CK全局环境那些配置,参数都在SinkFunction自定义
    ...
    ...
    ...
    env.addSource(new FlinkKafkaConsumer(PropertyUtil.get("topic1111"), new SimpleStringSchema(), sourcPro).setStartFromLatest()).uid("JobSource").name("JobSource").setParallelism(5)
    	.flatMap(new SourceFlatMap()).uid("SourceFlatMap").name("SourceFlatMap").setParallelism(10)
    	.flatMap(new EventFlatMap()).uid("EventFlatMap").name("EventFlatMap").setParallelism(10)
    	.addSink(MySink.sink()).setParallelism(4);
    env.execute("EventJob");
    
  • SinkFunction算子

    import java.util.List;
    import org.slf4j.Logger;
    import org.slf4j.LoggerFactory;
    import ru.yandex.clickhouse.ClickHouseDriver;
    import org.apache.flink.connector.jdbc.JdbcSink;
    import org.apache.flink.connector.jdbc.JdbcStatementBuilder;
    import org.apache.flink.connector.jdbc.JdbcExecutionOptions;
    import org.apache.flink.connector.jdbc.JdbcConnectionOptions;
    import org.apache.flink.streaming.api.functions.sink.SinkFunction;
    import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
    
    public class MySink extends RichSinkFunction {
        private static final Logger LOG = LoggerFactory.getLogger(MySink.class);
        private static String WRITE_USER = "your-user";
        private static String PASSWD = "your-password";
        private static String url = "jdbc:clickhouse://sc.chproxy.bigdata.services.org:10000/database_1564";
        private static String insertSql = "insert into database_1564.ch_zjk_test_local (seq,real_time,app_id,app_version,session_id,event_id,device_uuid,old_id,mos,m,o,br,os,bd,ise,lct,mid,chl,lpro,mosv,manu,osvi,is_ca,_pt,id,du,pg,dus,ext,gdu,ids,tab,tag,key,code,type,from,plat,exts,docid,style,state,types,newev,hotev,value,vtype,styles,fromID,status,action,msg_id,source,offset,column,spsuuid,buildev,referer,offsets,columnd,fold_id,searchid,rec_type,commentid,refererid,content_id,referer_id,schsessionid,exposurepercent,exposurepercents) values (?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?)";
    
    
        public static JdbcStatementBuilder> marketStatement =
                (ps, t) -> {
                    LOG.info("##### {}", t);
                    for (int i = 1; i < 71; i++) {
                        ps.setString(i, t.get(i - 1));
                    }
                };
    
        public static SinkFunction sink() {
            return JdbcSink.sink(insertSql, marketStatement, JdbcExecutionOptions.builder().withBatchIntervalMs(1000 * 3).withBatchSize(100).build(),
                    new JdbcConnectionOptions.JdbcConnectionOptionsBuilder()
                            .withUrl(url)
                            .withUsername(WRITE_USER)
                            .withPassword(PASSWD)
                            .withDriverName(ClickHouseDriver.class.getName())
                            .build());
        }
    }
    
3、ClickHouseJDBC:clickhouse-jdbc

此方式对任何Flink版本有效 建议使用

  • Maven依赖
    
    	ru.yandex.clickhouse
    	clickhouse-jdbc
    	0.2.3
    
    
  • Job类
    //它也不需要CK全局环境那些配置,参数都在FlatMap算子的open方法里自定义
    ...
    ...
    ...
    env.addSource(new FlinkKafkaConsumer(PropertyUtil.get("topic1111"), new SimpleStringSchema(), sourcPro).setStartFromLatest()).uid("JobSource").name("JobSource").setParallelism(30)
    	.flatMap(new SourceFlatMap()).uid("SourceFlatMap").name("SourceFlatMap").setParallelism(20)
    	.flatMap(new EventFlatMap()).uid("EventFlatMap").name("EventFlatMap").setParallelism(20)
    	//写入CK的算子
    	.flatMap(new CHSinkFlatMap()).uid("CHSinkFlatMap").name("CHSinkFlatMap").setParallelism(15)
    env.execute("EventJob");
    
  • FlatMap算子
    import java.util.List;
    import org.slf4j.Logger;
    import java.sql.Connection;
    import java.sql.SQLException;
    import java.sql.DriverManager;
    import org.slf4j.LoggerFactory;
    import java.sql.PreparedStatement;
    import org.apache.flink.util.Collector;
    import org.apache.commons.lang3.StringUtils;
    import org.apache.flink.api.java.tuple.Tuple4;
    import ru.yandex.clickhouse.ClickHouseConnection;
    import ru.yandex.clickhouse.ClickHouseDataSource;
    import org.apache.flink.configuration.Configuration;
    import ru.yandex.clickhouse.settings.ClickHouseProperties;
    import org.apache.flink.api.common.functions.RichFlatMapFunction;
    
    public class CHSinkFlatMap extends RichFlatMapFunction,String>{
    
        private static final Logger LOG = LoggerFactory.getLogger(CHSinkFlatMap.class);
        private static int count = 1;
        private static ClickHouseConnection connection= null;
        private static PreparedStatement preparedStatement = null;
        //创建连接对象和会话
        @Override
        public void open(Configuration parameters) throws Exception
        {
            try{
                connection = getConn();
                connection.setAutoCommit(false);
                preparedStatement = connection.prepareStatement(insertSql);
            }catch (Exception e)
            {
                LOG.error("clickhouse初始化连接报错:",e);
            }
        }
        //使用Batch批量写入,关闭自动提交
        @Override
        public void flatMap(List list, Collector collector) throws Exception {
            try {
                for(int i = 1; i<71 ; i++) {
                    preparedStatement.setString(i, StringUtils.isNotBlank(list.get(i-1)) ? list.get(i-1) : "uk");
                }
                preparedStatement.addBatch();
                count = count+1;
                try{
                    if (count >= 50000)
                    {
                        preparedStatement.executeBatch();
                        connection.commit();
                        preparedStatement.clearBatch();
                        count = 1;
                    }
                }catch (Exception ee)
                {
                    LOG.error("数据插入click house 报错:",ee);
                }
            }catch (Exception ex){
                LOG.error("ClickhouseSink插入报错====",ex);
            }
        }
    
        public static ClickHouseConnection getConn()
        {
            String username = "";
            String password = "";
            String address = "";
            String db = "";
            int socketTimeout = 600000;
            ClickHouseProperties properties = new ClickHouseProperties();
            properties.setUser(username);
            properties.setPassword(password);
            properties.setDatabase(db);
            properties.setSocketTimeout(socketTimeout);
            ClickHouseDataSource clickHouseDataSource = new ClickHouseDataSource(address, properties);
            ClickHouseConnection conn = null;
            try {
                conn = clickHouseDataSource.getConnection();
                return conn;
            } catch (SQLException e) {
                e.printStackTrace();
            }
            return null;
        }
    }
    
二、ClickHouse表 1、表引擎 三、物化视图实时cube 四、报表优化

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/5634788.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-12-15
下一篇 2022-12-16

发表评论

登录后才能评论

评论列表(0条)

保存