这是一些C ++实现基于递归的双射证明的算法
!n = (n-1) * (!(n-1) + !(n-2)),
项目
!n的排列数量在哪里
n。
#include <algorithm>#include <ctime>#include <iostream>#include <vector>static const int N = 12;static int count;template<class RAI>void derange(RAI p, RAI a, RAI b, int n) { if (n < 2) { if (n == 0) { for (int i = 0; i < N; ++i) p[b[i]] = a[i]; if (false) { for (int i = 0; i < N; ++i) std::cout << ' ' << p[i]; std::cout << 'n'; } else { ++count; } } return; } for (int i = 0; i < n - 1; ++i) { std::swap(a[i], a[n - 1]); derange(p, a, b, n - 1); std::swap(a[i], a[n - 1]); int j = b[i]; b[i] = b[n - 2]; b[n - 2] = b[n - 1]; b[n - 1] = j; std::swap(a[i], a[n - 2]); derange(p, a, b, n - 2); std::swap(a[i], a[n - 2]); j = b[n - 1]; b[n - 1] = b[n - 2]; b[n - 2] = b[i]; b[i] = j; }}int main() { std::vector<int> p(N); clock_t begin = clock(); std::vector<int> a(N); std::vector<int> b(N); for (int i = 0; i < N; ++i) a[i] = b[i] = i; derange(p.begin(), a.begin(), b.begin(), N); std::cout << count << " permutations in " << clock() - begin << " clocks for derange()n"; count = 0; begin = clock(); for (int i = 0; i < N; ++i) p[i] = i; while (std::next_permutation(p.begin(), p.end())) { for (int i = 0; i < N; ++i) { if (p[i] == i) goto bad; } ++count; bad: ; } std::cout << count << " permutations in " << clock() - begin << " clocks for next_permutation()n";}
在我的机器上,我得到
176214841 permutations in 13741305 clocks for derange()176214841 permutations in 14106430 clocks for next_permutation()
恕我直言,这是洗。可能双方都有改进(例如,重新
next_permutation排列仅扫描已更改元素的重排测试);留给读者练习。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)