数据 x_data = [1.0, 2.0, 3.0],y_data = [5.0, 8.0, 11.0]
模型选择:y = x * w + b
代码如下:
import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D x_data = [1.0, 2.0, 3.0] y_data = [5.0, 8.0, 11.0] def forward(x): return x * w + b def loss(x, y): y_pred = forward(x) return (y_pred-y) * (y_pred-y) mse_list = [] W = np.arange(0.0, 4.1, 0.1) B = np.arange(0.0, 4.1, 0.1) [w, b] = np.meshgrid(W, B) l_sum = 0 for x_val, y_val in zip(x_data, y_data): y_pred_val = forward(x_val) loss_val = loss(x_val, y_val) l_sum += loss_val fig = plt.figure() ax = Axes3D(fig) ax.plot_surface(w, b, l_sum/3) plt.show()
运用Axes3D显示的w, b和损失的关系的关系图如下:
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)