1.应用场景
2.学习/ *** 作
1.文档阅读
2.整理输出 2.1 MySQL通信协议08 | 数据库优化方案(一):查询请求增加时,如何做主从分离?-极客时间
TBD
2.2 Redis通信协议TBD
标准的MySQL通信协议是什么样子的, 另外我们使用Redis也可以看到Redis也有Redis通信协议,以及其他服务/软件,也是有各自的通信协议...
后续补充
...
3.问题/补充
本节课,我带你了解了查询量增加时,我们如何通过主从分离和一主多从部署抵抗增加的数据库流量的,你除了掌握主从复制的技术之外,还需要了解主从分离会带来什么问题以及它们的解决办法。这里我想让你明确的要点主要有:
1. 主从读写分离以及部署一主多从可以解决突发的数据库读流量,是一种数据库横向扩展的方法;
2. 读写分离后,主从的延迟是一个关键的监控指标,可能会造成写入数据之后立刻读的时候读取不到的情况;
3. 业界有很多的方案可以屏蔽主从分离之后数据库访问的细节,让开发人员像是访问单一数据库一样,包括有像 TDDL、Sharding-JDBC 这样的嵌入应用内部的方案,也有像 Mycat 这样的独立部署的代理方案。
其实,我们可以把主从复制引申为存储节点之间互相复制存储数据的技术,它可以实现数据的冗余,以达到备份和提升横向扩展能力的作用。
在使用主从复制这个技术点时,你一般会考虑两个问题:
1. 主从的一致性和写入性能的权衡,如果你要保证所有从节点都写入成功,那么写入性能一定会受影响;如果你只写入主节点就返回成功,那么从节点就有可能出现数据同步失败的情况,从而造成主从不一致,而在互联网的项目中,我们一般会优先考虑性能而不是数据的强一致性。
2. 主从的延迟问题,很多诡异的读取不到数据的问题都可能会和它有关,如果你遇到这类问题不妨先看看主从延迟的数据。
我们采用的很多组件都会使用到这个技术,比如,Redis 也是通过主从复制实现读写分离;Elasticsearch 中存储的索引分片也可以被复制到多个节点中;写入到 HDFS 中文件也会被复制到多个 DataNode 中。只是不同的组件对于复制的一致性、延迟要求不同,采用的方案也不同。但是这种设计的思想是通用的,是你需要了解的,这样你在学习其他存储组件的时候就能够触类旁通了。
一课一思
我们提到,存储节点间互相复制数据是一种常见的,提升系统可用性和性能的方式,那么你还了解哪些组件有使用这种方式呢?它们的复制方式又是如何的呢?欢迎在留言区与我分享你的经验。
4.参考
后续补充
...
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)