numpy模块,是python用于数值计算的基础模块,支持大量的维度数值与矩阵计算。
numpy模块函数numpy.arange(n) 生成0~n-1的整数
import numpy as ny y=ny.arange(3) print(y) # 输出 [0,1,2]
numpy.arange(m,n,k) 数据生成m到n的以k为步长
import numpy as ny y=ny.arange(1,10,2) print(y) # 输出 [1 3 5 7 9]
numpy.linspace(m,n,k) 在m到n的数据中按等距取k个值
import numpy as ny y=ny.linspace(1,10,3) print(y) #输出 [ 1. 5.5 10. ]
numpy.reshape(m,n) 定义一个m行n列的矩阵
import numpy as ny y=ny.arange(6) x=y.reshape(2,3) print(x) # 输出 [[0,1,2] [3,4,5]]
numpy.reshape(n,-1)或(-1,n) 确定矩阵的行(列)后,相应的列(行)自动确定
import numpy as ny y=ny.arange(6) x=y.reshape(2,-1) print(x) # 输出 [[0,1,2] [3,4,5]]
numpy.zeros((m,n)) 生成一个m行n列的零矩阵
import numpy as ny y=ny.zeros((3,3)) print(y) # 输出 [[0. 0. 0.] [0. 0. 0.] [0. 0. 0.]]
numpy.ones((k,m,n)), dtype=numpy.int32 生成k个m行n列的单位矩阵,且数据类型为整数
import numpy as ny y=ny.ones((1,2,2),dtype=ny.int32) print(y) #输出 [[[1 1] [1 1]]]
numpy.shape 打印矩阵的行和列(矩阵长度)
import numpy as ny y=ny.arange(6) x=y.reshape(2,3) print(x.shape) #输出 (2, 3)
numpy.ndim 打印矩阵的维度
import numpy as ny y=ny.arange(6) x=y.reshape(2,3) print(x.ndim) #输出 2
numpy.size 输出数组的元素的个数
import numpy as ny y=ny.arange(6) x=y.reshape(2,3) print(x.size) #输出 6
numpy.exp(A) 求矩阵的A次幂
numpy.sqrt(B) 矩阵中每个元素开方
import numpy as ny b=[4, 9, 16] print(ny.sqrt(b)) #输出 [2,3,4]
numpy.floor() 向下取整
import numpy as ny b=[4, 5.3, 6.7] print(ny.floor(b)) #输出 [4,5,6]
numpy.ravel() 将矩阵重新拉伸成一个向量
import numpy as ny y=ny.arange(6) x=y.reshape(2,3) a=ny.ravel(x) print(a) #输出 [0 1 2 3 4 5]
numpy.T 求转置矩阵
import numpy as ny y=ny.arange(6) x=y.reshape(2,3) a=x.T print(a) #输出 [[0 3] [1 4] [2 5]]
numpy.hstack 横向拼接
numpy.vstack 纵向拼接
import numpy as ny y=ny.arange(6) x=y.reshape(2,3) a=ny.arange(2,8,1) z=a.reshape(2,3) print(ny.hstack((x,z))) #输出 [[0 1 2 2 3 4] [3 4 5 5 6 7]]
numpy.hsplit(a,n) 将a矩阵横向分为n份
numpy.hsplit(a,(m,n)) 在索引为m和n的空隙处将矩阵横向切开
import numpy as ny y=ny.arange(6) x=y.reshape(2,3) a=ny.arange(2,8,1) z=a.reshape(2,3) q=ny.hstack((x,z)) print(ny.hsplit(q,3)) #输出 [array([[0, 1], [3, 4]]), array([[2, 2], [5, 5]]), array([[3, 4], [6, 7]])]numpy模块统计函数与线性计算
numpy.median() 中值
numpy.mean() 平均值
numpy.average() 加权平均值
若A,B为同维矩阵,则A*B返回矩阵,A.dot(B)或numpy.dot(A,B)返回矩阵乘法的结果
numpy.linalg模块 det():行列式 inv():求逆矩阵
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)