1.构建53矩阵*
import torch as t x = t.Tensor(5,3) print(x)
----------------------------------------------在pycharm中的运行结果-------------------------------------------------------
2.使用【0,1】均匀分布随机初始化二维数组
import torch as t x = t.Tensor(5,3) x= t.rand(5,3) print(x)
----------------------------------------------在pycharm中的运行结果-------------------------------------------------------
3.查看x形状和列的个数
import torch as t x = t.rand(5,3) print(x.size()) print(x.size()[0]) print(x.size(1))
----------------------------------------------在pycharm中的运行结果-------------------------------------------------------
4.加法的三种写法
import torch as t x = t.rand(5,3) y = t.rand(5,3) print("最初y,x") print(y) print(x) print("第一种加法,y的结果") print(x+y) print("第二种加法,y的结果") print(t.add(x,y)) print("第三种加法,y的结果") result=t.Tensor(5,3) t.add(x,y,out=result) print(result)
----------------------------------------------在pycharm中的运行结果-------------------------------------------------------
5.对y的两种加法对比
import torch as t x = t.rand(5,3) y = t.rand(5,3) print("最初y,x") print(y) print(x) print("第一种加法,y的结果") print(y.add(x)) print("第二种加法,y的结果") print(y.add_(x))
----------------------------------------------在pycharm中的运行结果-------------------------------------------------------
6.Tensor的选取 *** 作
import torch as t x = t.rand(5,3) print(x) print(x[:, 1])
----------------------------------------------在pycharm中的运行结果-------------------------------------------------------
7.Tensor与numpy之间的互 *** 作
import torch as t import numpy as np a=t.ones(5) print(a) b=a.numpy() print(b) a=np.ones(5) b=t.from_numpy(a) print(a) print(b)
----------------------------------------------在pycharm中的运行结果-------------------------------------------------------
8.Tensor与numpy共同改变
import torch as t import numpy as np a=np.ones(5) b=t.from_numpy(a) b.add_(1) print(a) print(b)
----------------------------------------------在pycharm中的运行结果-------------------------------------------------------
1.创建tensor
import torch as t a=t.Tensor(2,3) print(a) b=t.Tensor([[1,2,3],[4,5,6]]) print(b) b.tolist() print(b) b_size=b.size() print(b_size) print(b.numel()) c=t.Tensor(b_size) d=t.Tensor((2,3)) print(c) print(d)
----------------------------------------------在pycharm中的运行结果-------------------------------------------------------
2. 查看形状
import torch as t c=t.Tensor(b_size) print(c.shape) print(c.size)
----------------------------------------------在pycharm中的运行结果-------------------------------------------------------
3. 其他创建方法
import torch as t print(t.ones(2,3)) print(t.zeros(2,3)) print(t.arange(1,6,2)) print(t.linspace(1,10,3)) print(t.randn(2,3)) print(t.randperm(5)) print(t.eye(2,3))
----------------------------------------------在pycharm中的运行结果-------------------------------------------------------
4.常用的tensor *** 作
import torch as t a=t.arange(0,6) a.view(2,3) print(a) b=a.view(-1,3) print(b) print(b.unsqueeze(1)) print(b.unsqueeze(-2)) c=b.view(1,1,1,2,3) c.squeeze(0) print(c) c.squeeze() a[1]=100 print(b) b.resize_(1,3) print(b) b.resize_(3,3) print(b)
----------------------------------------------在pycharm中的运行结果-------------------------------------------------------
5.索引 *** 作
import torch as t a=t.randn(3,4) print(a) print(a[0]) print(a[:0]) print(a[0][2]) print(a[0,-1]) print(a[:2]) print(a[:2,0:2]) print(a[0:1,:2]) print(a[0,:2]) print(a>1) print(a[a>1]) print(a[t.LongTensor([0,1])])
----------------------------------------------在pycharm中的运行结果-------------------------------------------------------
6.gather,scatter_ *** 作
import torch as t a=t.arange(0,16).view(4,4) print(a) index=t.LongTensor([[0,1,2,3]]) print(a.gather(0,index)) index=t.LongTensor([[3,2,1,0]]).t() print(a.gather(1,index)) index=t.LongTensor([[0,1,2,3]]) print(a.gather(0,index)) index=t.LongTensor([[0,1,2,3],[3,2,1,0]]).t() b=a.gather(1,index) print(b) #scatter c=t.zeros(4,4,dtype=t.int64) c.scatter_(1,index,b).float() print(c)
----------------------------------------------在pycharm中的运行结果-------------------------------------------------------
7.高级索引
import torch as t x=t.arange(0,27).view(3,3,3) print(x) print(x[[1,2],[1,2],[2,0]]) print(x[[2,1,0],[0],[1]]) print(x[[0,2],...])
----------------------------------------------在pycharm中的运行结果-------------------------------------------------------
8.tensor类型
import torch as t t.set_default_tensor_type('torch.DoubleTensor') a=t.Tensor(2,3) print(a) b=a.float() print(b) c=a.type_as(b) print(c) d=a.new(2,3) print(d) print(a.new) t.set_default_tensor_type('torch.FloatTensor')
----------------------------------------------在pycharm中的运行结果-------------------------------------------------------
9.逐元素 *** 作
import torch as t a=t.arange(0,6).view(2,3) print(t.cos(a)) print(a%3) print(a**2) print(a) print(t.clamp(a,min=3))
----------------------------------------------在pycharm中的运行结果-------------------------------------------------------
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)