0的阶乘等于多少?为什么?

0的阶乘等于多少?为什么?,第1张

0的阶乘就是1,这是人为的规定

但是这个人为规定不是随意规定的,是根据正整数的阶乘运算关系扩展而来的。

因为本来n(n是正整数)的阶乘就是从1×2×……×n这n个数相乘。但是这个定义对0就无效了。那么人们只能根据不同数的阶乘关系来扩展定义。

从正整数的阶乘能看出来,(n+1)!÷n!=n+1,所以n!=(n+1)!÷(n+1)。那么把这个式子扩展到0上,就得到0!=1!÷1=1÷1=1。就是这样扩展定义的。

扩展资料:

一个正整数的阶乘(factorial)是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的

阶乘写作n!。1808年,基斯顿·卡曼引进这个表示法。阶乘常用于计算机领域。

大于等于1

任何大于等于1 的自然数n 阶乘表示方法:

n!=1×2×3×...×(n-1)n或n!=(n-1)!×n0的阶乘

其中0!=1

参考资料来源:百度百科-阶乘

0的阶乘为1。

具体如下:

一个正整数的阶乘(英语:factorial)是所有小于及等于该数的正整数的积,并且有0的阶乘为1。简单一点是认为规定的,但它是有道理的,因为阶乘是一个递推定义,n!=n*(n-1)!,那么必然有一个初值需要人为规定.

因为1!=1,根据1!=1*0!,所以0!=1而不是0.


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/5790395.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-01-31
下一篇 2023-01-31

发表评论

登录后才能评论

评论列表(0条)

保存