极差来刻画一组数据的离散程度,以及反映的是变量分布的变异范围和离散幅度,在总体中任何两个单位的标准值之差都不能超过极差。同时,它能体现一组数据波动的范围。极差越大,离散程度越大,反之,离散程度越小。
一组数据中的最大数据与最小数据的差叫做这组数据的极差。 在统计中常用极差来刻画一组数据的离散程度。以及表示,R=Xmax-Xmin。又称全距或范围误差。
反映的是变量分布的变异范围和离散幅度,在总体中任何两个单位的标准值之差都不能超过极差。同时,它能体现一组数据波动的范围。例如:“早穿皮袄午穿纱”,这句话说明的气温特征数就是极差。
扩展资料
示例:
R=xmax-xmin
(其中,xmax为最大值,xmin为最小值)
例如 :12 12 13 14 16 21
这组数的极差就是 :21-12=9
另附:方差计算公式:s2= [(x1- )2 + (x2- )2+...+ (xn- )2] ( 即为此组数据的加权平均数)。
极差是用来表示统计资料中的变异量数(measures of variation),其最大值与最小值之间的差距,即最大值减最小值后所得之数据。
它是标志值变动的最大范围,它是测定标志变动的最简单的指标。移动极差(Moving Range)是其中的一种。极差不能用作比较,单位不同 ,方差能用作比较, 因为都是个比率。
极差的优点:
极差只指明了测定值的最大离散范围,而未能利用全部测量值的信息,不能细致地反映测量值彼此相符合的程度,极差是总体标准偏差的有偏估计值,当乘以校正系数之后,可以作为总体标准偏差的无偏估计值。
它的优点是计算简单,含义直观,运用方便,故在数据统计处理中仍有着相当广泛的应用。 但是,它仅仅取决于两个极端值的水平,不能反映其间的变量分布情况,同时易受极端值的影响。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)