例如 :12 12 13 14 16 21
这组数的极差就是 :21-12=9
极差是指一组数据内的最大值和最小值之间的差异。平均差是说明集中趋势的,标准差是说明一组数据的离中趋势的。一组数据中各数据与平均数的差的平方和的平均数叫做这组数据的方差;极差旁空越大,平均差的代表性越小,反之亦然;标准差越大,平均差的代表性越小,反之亦然。方差的算术平方根=标准差
平均数公式为:
平均数=(a1+a2+…+an)/n
如:
3,4,5的平均数为:
(3+4+5)/3=4
中位数 是数据排序后,位置在最中间的数值比如有虚肢 1 4 7 11 13 中位数就是7 M的位置=(1+n)/2
众数 就是在一排数字中,出现次数最多的数字
方差=(每个样本-平均值)的平方的和
标准差:因为有两个定义,用在运誉瞎不同的场合:
如是总体,标准差公式根号内除以n,
如是样本,标准差公式根号内除以(n-1),
极差=最大值-最小值
请点击输入图片描述(最多18字)
极差,又称范围误差或全距(Range),以R表示,是用来表示统计资料中的变异量数(measures of variation),其最大值与最小值之间的差距,即最大值减最小值后所得之数据。[1]它是标志值变动的最大范围,它是测定标志变动的最简单的指标。移动极差(Moving Range)是其中的一种。极差不能用作比较,单位不同 ,方差能用作比较, 因为都是个比率。
极差没有充分利用数据的信息,但计算十分简单,仅适用样本容量较小(n<10)情况。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)