2.如果用正多边形镶嵌(包括边数相同或几种边数不同的),必须在一个顶点处,正多边形的内角之和为360°.
.我们在这里讨论的镶嵌,限定正多边形的顶点不落在另一个正多边形的边上,正多边形的边必须与另一个正多边形的边重合,也就是镶嵌的正多边形的边长都相等.
.若用同一种正多边形镶嵌,显然边都相等,只需一个顶点处的内角之和为360°.若用正三角形,则每个顶点周围有六个正三角形,若用正方形,则每个顶点周围有四个正方形;若用正六边形,则每个顶点周围有三个正六边形,用正五边形能否进行平面镶嵌呢?为什么?
.如果用不同边数的正多边形镶嵌,同样要满足两点:一是边长相等,二是一个顶点处的内角之和为360°.
用同一图形的话,有三种,只有正三角形、正方形和正六边形可镶嵌平面,用其它正多边形不能镶嵌平面。用多种正多边形的话,有17种,如下:
用1种:(3,3,3,3,3,3)(4,4,4,4)(6,6,6);
用2种:(4,8,8)(3,12,12)(3,3,6,6)(3,3,3,3,6)(3,3,3,4,4)(5,5,10)
用3种:(3,4,4,6)(4,6,12)(3,3,4,12)(3,10,15)(3,9,18)(3,8,24)(3,7,42)(4,5,20)
其中的数字分别代表正多边形的边数。共有17种。
用若干类全等形(能够完全重合的图形叫做全等形)无间隙且不重叠地覆盖平面的一部分,叫做这几类图形能镶嵌(覆盖、铺砌)平面.镶嵌的一个关键点是:在每个公共顶点处,各角的和是360°.最简单的镶嵌是只用一类全等形镶嵌平面。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)