抛物线标准方程:y²=2px(p>0);y²=-2px(p>0);x²=2py(p>0);x²=-2py(p>0)。
共同点:
①原点在抛物线上,离心率e均为1。
②对称轴为坐标轴。
③准线与对称轴垂直,垂足与焦点分别对称于原点,它们与原点的距离都等于一次项系数的绝对值的1/4。
不同点:
①对称轴为x轴时,方程右端为±2px,方程的左端为y^2;对称轴为y轴时,方程的右端为±2py,方程的左端为x^2。
②开口方向与x轴(或y轴)的正半轴相同时,焦点在x轴(y轴)的正半轴上,方程的右端取正号;开口方向与x(或y轴)的负半轴相同时,焦点在x轴(或y轴)的负半轴上,方程的右端取负号。
抛物线标准方程是:y²=2px(p>0);y²=-2px(p>0);x²=2py(p>0);x²=-2py(p>0)。
抛物线是平面内到一个定点F(焦点)和一条定直线l(准线)距离相等的点的轨迹。它有许多表示方法,例如参数表示,标准方程表示等等。
它在几何光学和力学中有重要的用处。 抛物线也是圆锥曲线的一种,即圆锥面与平行于某条母线的平面相截而得的曲线。抛物线在合适的坐标变换下,也可看成二次函数图像。
抛物线的几何性质:
(1)设抛物线上一点P的切线与准线相交于Q,F是抛物线的焦点,则PF⊥QF。且过P作PA垂直于准线,垂足为A,那么PQ平分∠APF。
(2)过抛物线上一点P作准线的垂线PA,则∠APF的平分线与抛物线切于P。〈为性质(1)第二部分的逆定理〉从这条性质可以得出过抛物线上一点P作抛物线的切线的尺规作图方法。
(3)设抛物线上一点P(P不是顶点)的切线与法线分别交轴于A、B,则F为AB中点。这个性质可以推出抛物线的光学性质,即经焦点的光线经抛物线反射后的光线平行于抛物线的对称轴。
各种探照灯、汽车灯即利用抛物线(面)的这个性质,让光源处在焦点处以发射出(准)平行光。
抛物线方程y^2=2px(p>0)里的p表示焦点到准线的距离。2是常数。抛物线中的p叫做焦准距,是圆锥曲线的几个基本参量之百一,意义为焦点到对应准线的距离,符号度为p。
一、抛物线的标准方程与几何性质
二、抛物线方程中,字母p的几何意义是抛物线的焦点F到准线的距离,p/2等于焦点到抛物线顶点的距离,记牢对解题非常有帮助。
用抛物线定义解决问题,体现了等价转换思想的应用。
由y2=mx(m≠0)或x2=my(m≠0)求焦点坐标时,只需将x或y的系数除以4,再确定焦点位置即可。
涉及抛物线上的点到焦点(准线)的距离问题,可优先考虑利用抛物线的定义转化为点到准线(焦点)的距离问题求解。
典型例题1:
三、求抛物线的方程一般是利用待定系数法,即求p但要注意判断标准方程的形式。
研究抛物线的几何性质时,一是注意定义转化应用;二是要结合图形分析,同时注意平面几何性质的应用。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)