雅克比行列式是什么?

雅克比行列式是什么?,第1张

雅可比行列式通常称为雅可比式(Jacobian),它是以n个n元函数的偏导数为元素的行列式。事实上,在函数都连续可微(即偏导数都连续)的前提之下,它就是函数组的微分形式下的系数矩阵(即雅可比矩阵)的行列式。 

若因变量对自变量连续可微,而自变量对新变量连续可微,则因变量也对新变量连续可微。这可用行列式的乘法法则和偏导数的连锁法则直接验证。也类似于导数的连锁法则。偏导数的连锁法则也有类似的公式;这常用于重积分的计算中。

面积元证明:

二维下dx(u,v)dy(u,v)=Jdudv成立。

证明:对于曲面x=x(u,v),y=y(u,v),取它的微元,即小曲边四边形ABCD,其中A(u,v),B(u+△u,v),C(u+△u,v+△v),D(u,v+△v),这个曲边四边形ABCD可以近似看成由微小向量B(u+△u,v)-A(u,v)和D(u,v+△v)-A(u,v)张成。

利用中值定理可知:(u+△u,v)-(u,v)=Mdu(u,v+△v)-(u,v)=Ndv式中M,N为偏导数形式,可以通过简单计算得出。

当变化量很小时,将(u+△u,v)-(u,v)近似看为dx(u,v)(u,v+△v)-(u,v)近似看为dy(u,v),故dx(u,v)dy(u,v)=M*Ndudv式中M*N为二维Jacobi行列式的展开形式。

分子分母都是一个二阶行列式,二阶行列式的计算是

|a b|

|c d|

=ad-bc。

拓展资料:

雅可比人物介绍:

卡尔·雅可比(Carl Gustav Jacob Jacobi,1804~1851),德国数学家

1804年12月10日生于普鲁士的波茨坦;1851年2月18日卒于柏林。雅可比是数学史上最勤奋的学者之一,与欧拉一样也是一位在数学上多产的数学家,是被广泛承认的历史上最伟大的数学家之一。

雅可比善于处理各种繁复的代数问题,在纯粹数学和应用数学上都有非凡的贡献,他所理解的数学有一种强烈的柏拉图式的格调,其数学成就对后人影响颇为深远。

在他逝世后,狄利克雷称他为拉格朗日以来德国科学院成员中最卓越的数学家。

理解雅可比式:公式只是一种记号,关键在有方程组确定的隐函数求导数或偏导数时,解方程组会出现一个共同的分母,这个分母如果用行列式描述的话就是雅可比行列式。

对许多力学实际问题,可以通过分离变 量法求出哈密顿-雅可比方程的全积分。对于工程上的保守系统,用此法计算繁琐,但它对天体力学的摄动法却大有帮助。

简介

在向量分析中,雅可比矩阵是函数的一阶偏导数以一定方式排列成的矩阵,其行列式称为雅可比行列式。

在代数几何中,代数曲线的雅可比行列式表示雅可比簇:伴随该曲线的一个代数群,曲线可以嵌入其中。

它们全部都以数学家卡尔·雅可比命名;英文雅可比行列式"Jacobian"可以发音为[ja ˈko bi ən]或者[ʤə ˈko bi ən]。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/5846110.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-02-17
下一篇 2023-02-17

发表评论

登录后才能评论

评论列表(0条)

保存