通径公式是d=2ep (p=焦点到准线的距离)
准线:椭圆和双曲线:x=(a^2)/c
抛物线:x=p/2 (以y^2=2px为例)
焦半径:
椭圆和双曲线:a±ex (e为离心率。x为该点的横坐标,小于0取加号,大于0取减号)
抛物线:p/2+x (以y^2=2px为例)
以上椭圆和双曲线以焦点在x轴上为例。
弦长公式:设弦所在直线的斜率为k,则弦长=根号[(1+k^2)*(x1-x2)^2]=根号[(1+k^2)*((x1+x2)^2-4*x1*x2)] 用直线的方程与圆锥曲线的方程联立,消去y即得到关于x的一元二次方程,x1,x2为方程的两根,用韦达定理即可知x1+x2和x1*x2,再代入公式即可求得弦长。
抛物线通径=2p
抛物线焦点弦长=x1+x2+p 用焦点弦的方程与圆锥曲线的方程联立,消去y即得到关于x的一元二次方程,x1,x2为方程的两根
通径公式是d=2ep(p=焦点到准线的距离)
通径公式包括椭圆、双曲线、抛物线。椭圆、双曲线的通径长均为|AB|=2b^2/a(其中a是长轴或实轴的1/2,b是短轴或虚轴的1/2,不论椭圆或双曲线的焦点在x轴还是y轴都有这个结论)。抛物线的通径长为|AB|=4p(其中p为抛物线焦准距的1/2)。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)