通分是根据分数(式)的基本性质,把几个异分母分数(式)化成与原来分数(式)相等的同分母的分数(式)的过程。
根据分数(式)的基本性质,把几个异分母分数(式)化成与原来分数(式)相等的同分母的分数(式)的过程,叫做通分。通分和约分的依据都是分数(式)的基本性质 :分数(式)的分子、分母同乘以或除以一个不等于零的数(式),分数(式)的大小不变。分母不变,对方的分子分母交叉相乘。
通分的关键在把异分母分数转化为同分母分数。
举例说明:
比较:7/9和8/11的大小
解:7/9 = 7×11/9×11 = 77/99
8/11 = 8×9/11×9 = 72/99
∵ 77/99 >72/99
∴ 7/9 >8/11
甲:乙=2:5=8:20 乙:丙=4:7=20:35 甲:乙:丙=8:20:35
意义:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。 最简分数:分子、分母是互质数的分数,叫做最简分数。
通分根据分数(式)的基本性质,把几个异分母分数(式)化成与原来分数(式)相等的同分母的分数(式)的过程,叫做通分。
通分的关键是确定几个分式的最简公分母,其步骤如下:
1.分别列出各分母的约数;
2.将各分母约数相乘,若有公约数只乘一次,所得结果即为各分母最小公倍数;
3.凡出现的字母或含有字母的因式为底的幂的因式都要取;
4.相同字母或含字母的因式的幂的因式取指数最大的;
5.将上述取得的式子都乘起来,就得到了最简公分母。
扩展资料
示例
根据分数的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。 把异分母分数分别化成与原来分数相等的同分母分数,叫做通分。 把甲数与乙数的比和乙数与丙数的两个不同的比化成甲与乙与丙的比,也称作通分。 例如:
比较:7/9和8/11的大小
解:7/9 = 7×11/9×11 = 77/99
8/11 = 8×9/11×9 = 72/99
∵ 77/99 >72/99
∴ 7/9 >8/11
甲:乙=2:5=8:20 乙:丙=4:7=20:35 甲:乙:丙=8:20:35
意义:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。 最简分数:分子、分母是互质数的分数,叫做最简分数。
通分定义及举例说明:
1、通分是根据分数或分式的基本性质,把几个异分母分数或分式化成与原来分数或分式相等的同分母的分数或分式的过程。
例如,把3分之1和4分之1通分,3和4的最小公倍数为12,3分之1等于12分之4,3分之1等于12分之3,则通分结果为12分之4和12分之3。
2、把甲数与乙数的比和乙数与丙数的比,化成甲与乙与丙的比,也称作通分。
例如,比较9分之7和11分之8的大小,9分之7等于99分之77,11分之8等于99分之72,因为99分之77大于99分之72,所以9分之7大于11分之8。
通分的意义:
通分的意义是把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。 最简分数:分子、分母是互质数的分数,叫做最简分数。
分子、分母只有公因数1的分数叫做最简分数或者说分子和分母是互质数的分数,叫做最简分数,又称既约分数。最简分数又叫既约分数,既约分数可理解成已经约分过的分数,也就是分子和分母是互质数的分数。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)