一般情况下点P的横坐标和纵坐标相等,则称点P为和谐点,(-1,-3)这两个的横坐标是-1,纵坐标是-3,他们的横坐标纵坐标不相等,所以不是和谐点。
二次函数图像上的和谐点不一定是连续的。连续的情况:如果定义域为R,就是连续不断的。但是只是一部分。
连续性的判断:主要看函数的导数是否存在的, 因为是二次函数,求导之后是一次函数的, 所以左导数和右导数是相等的,即导数是存在的,就具有一定范围的连续.
欢迎分享,转载请注明来源:内存溢出
一般情况下点P的横坐标和纵坐标相等,则称点P为和谐点,(-1,-3)这两个的横坐标是-1,纵坐标是-3,他们的横坐标纵坐标不相等,所以不是和谐点。
二次函数图像上的和谐点不一定是连续的。连续的情况:如果定义域为R,就是连续不断的。但是只是一部分。
连续性的判断:主要看函数的导数是否存在的, 因为是二次函数,求导之后是一次函数的, 所以左导数和右导数是相等的,即导数是存在的,就具有一定范围的连续.
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)