sql语句中,添加记录的语法为:insert into 表名 (col1,col2....coln)values(value1,value2.....valuen);
其中,如果你插入的每一列都是顺序插入,无一缺漏的话,(col1,col2...coln)可以省略。
也就是上式也可以简化为:insert into 表名 values(value1,value2.....valuen);
看了你写的sql代码,问题出在insert into 的整体语句出现在了不该出现的地方,只需做一点小改动即可解决,如下图:
解析:insert into语句需要在user表已经存在的情况下才可以使用。而你原来的语句中,将上图2中的语句插入到了create table user的语句中,致使create table user 语句未能成功执行,所以才会报错。
而将“INSERT INTO user(uid,tel) values('甲','3354986')”整条语句直接拿出来放在“ENGINE=InnoDB DEFAULT CHARSET=gbk”后面之后,整个sql就可以顺利执行了。
扩展资料:
当mysql大批量插入数据的时候就会变的非常慢, mysql提高insert into 插入速度的方法有三种:
1、第一种插入提速方法:
如果数据库中的数据已经很多(几百万条), 那么可以 加大mysql配置中的 bulk_insert_buffer_size,这个参数默认为8M
举例:bulk_insert_buffer_size=100M;
2、第二种mysql插入提速方法:
改写所有 insert into 语句为 insert delayed into
这个insert delayed不同之处在于:立即返回结果,后台进行处理插入。
3、第三个方法: 一次插入多条数据:
insert中插入多条数据,举例:
insert into table values('11','11'),('22','22'),('33','33')...
在已有的 MySQL 服务器之上使用 Apache Spark (无需将数据导出到 Spark 或者 Hadoop 平台上),这样至少可以提升 10 倍的查询性能。使用多个 MySQL 服务器(复制或者 Percona XtraDB Cluster)可以让我们在某些查询上得到额外的性能提升。你也可以使用 Spark 的缓存功能来缓存整个 MySQL 查询结果表。思路很简单:Spark 可以通过 JDBC 读取 MySQL 上的数据,也可以执行 SQL 查询,因此我们可以直接连接到 MySQL 并执行查询。那么为什么速度会快呢?对一些需要运行很长时间的查询(如报表或者BI),由于 Spark 是一个大规模并行系统,因此查询会非常的快。MySQL 只能为每一个查询分配一个 CPU 核来处理,而 Spark 可以使用所有集群节点的所有核。在下面的例子中,我们会在 Spark 中执行 MySQL 查询,这个查询速度比直接在 MySQL 上执行速度要快 5 到 10 倍。
另外,Spark 可以增加“集群”级别的并行机制,在使用 MySQL 复制或者 Percona XtraDB Cluster 的情况下,Spark 可以把查询变成一组更小的查询(有点像使用了分区表时可以在每个分区都执行一个查询),然后在多个 Percona XtraDB Cluster 节点的多个从服务器上并行的执行这些小查询。最后它会使用map/reduce 方式将每个节点返回的结果聚合在一起形成完整的结果。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)