私以为,大数据的核心在三个地方:数学+计算机知识+业务
先说说题主说到的编程,我在这里将它纳入计算机知识这一部分,因为编程对于我们来说只是大数据的冰山一角。这两年大数据的发展,绝对不是因为编程语言的进步,很大一部分是由于计算机工具的进步或者硬件的提升。 尤其是现在计算机硬件价格的下跌,以及大数据处理工具的发展,如hadoop,spark等,带来了数据处理能力的飞速提升,才导致了现在大数据的越来越火。
至于我们说的数据挖掘知识和编程语言,这些都是很早以前就已经存在的知识,这几年也没有得到很令人惊喜的新进展(我说的是知识本身,不是指应用)。
总之: 大数据之所以得到人们关注,最重要的是数据处理工具的进步以及数据量的累积(尤其是互联网)
那么是不是说明 掌握编程或者计算机工具就是迈入大数据的关键路径呢?
答案:显然不是,数学才是真正的核心知识。
没错,数学是在数据挖掘领域非常重要的甚至是核心的部分,编程只是工具,真的只是工具。 编程语言有好几十种吗,但是数据挖掘理论知识就那儿点。 你用任何一门语言去实现你的数学思想便可以达到数据挖掘的目标。 学术研究甚至可以抛弃编程,完全只研究算法(注意:这样的话会容易造成纸上谈兵)。
后端。
这里的前端是指的为访问者服务为目的的应用,后端是管理、运营、数据挖掘等非面向访问者的东西。因为php快速、易于部署,因此在前端具有比其他语言更大的优势(例如界面3个月换一次),但是php毕竟是解释型的,因此在稳定(指需求变化小,很少重新编译)而又复杂(指令密集)的情况下,运行效率相对于编译型的语言低而处于劣势。
PHP是服务器端脚本语言,服务器端 != 后端,Client端 != 前端
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)