在matlab软件中用拉普拉斯算子和canny算子进行边缘检测的程序

在matlab软件中用拉普拉斯算子和canny算子进行边缘检测的程序,第1张

i=imread('1jpg'); 读入图像1

i1=rgb2gray(i); 把rgb图像转换成灰度图像

bw1=edge(i1,'log',007); 做阈值为007的高斯—拉普拉斯(Log)算法

figure(3),imshow(i); 显示原图

figure(4),imshow(bw1); 显示高斯—拉普拉斯(Log)边缘检测后的图

可以看一看这个例子:

C:\Program Files\National Instruments\LabVIEW 2012\examples\Vision\2 Functions\Caliper里面的Edge Detection Examplellb里面的Straight Edge Detection Examplevi

主要vi如下图,具体用法见上例。

根据Calibration、Straghtness、Score等参数可以判断检测轮廓是否为直线。

Press the "Start" button to see a demonstration of

denoising tools in the Wavelet Toolbox

This demo uses Wavelet Toolbox functions

% Set signal to noise ratio and set rand seed

sqrt_snr = 3; init = 2055615866;

% Generate original signal and a noisy version adding

% a standard Gaussian white noise

[xref,x] = wnoise(3,11,sqrt_snr,init);

% Denoise noisy signal using soft heuristic SURE thresholding

% and scaled noise option, on detail coefficients obtained

% from the decomposition of x, at level 5 by sym8 wavelet

% Generate original signal and a noisy version adding

% a standard Gaussian white noise

lev = 5;

xd = wden(x,'heursure','s','one',lev,'sym8');

% Denoise noisy signal using soft SURE thresholding

xd = wden(x,'rigrsure','s','one',lev,'sym8');

% Denoise noisy signal using fixed form threshold with

% a single level estimation of noise standard deviation

xd = wden(x,'sqtwolog','s','sln',lev,'sym8');

% Denoise noisy signal using fixed minimax threshold with

% a multiple level estimation of noise standard deviation

xd = wden(x,'minimaxi','s','sln',lev,'sym8');

% If many trials are necessary, it is better to perform

% decomposition one time and threshold it many times :

% decomposition

[c,l] = wavedec(x,lev,'sym8');

% threshold the decomposition structure [c,l]

xd = wden(c,l,'minimaxi','s','sln',lev,'sym8');

% Load electrical signal and select a part

load leleccum; indx = 2600:3100;

x = leleccum(indx);

% Use wdencmp for signal de-noising

% find default values (see ddencmp)

[thr,sorh,keepapp] = ddencmp('den','wv',x);

% denoise signal using global thresholding option

xd = wdencmp('gbl',x,'db3',2,thr,sorh,keepapp);

% Some trial examples without commands counterpart

% Rand initialization: init = 2055615866;

% Square root of signal to noise ratio: sqrt_snr = 5;

% [xref,x] = wnoise(1,11,sqrt_snr,init);

% Some trial examples without commands counterpart (more)

% Rand initialization: init = 2055615866;

% Square root of signal to noise ratio: sqrt_snr = 4;

% [xref,x] = wnoise(2,11,sqrt_snr,init);

% Some trial examples without commands counterpart (more)

% Rand initialization: init = 2055615866;

% Square root of signal to noise ratio: sqrt_snr = 3;

% [xref,x] = wnoise(3,11,sqrt_snr,init);

% Some trial examples without commands counterpart (more)

% Rand initialization: init = 2055615866;

% Square root of signal to noise ratio: sqrt_snr = 3;

% [xref,x] = wnoise(3,11,sqrt_snr,init);

% Some trial examples without commands counterpart (more)

% Rand initialization: init = 2055615866;

% Square root of signal to noise ratio: sqrt_snr = 3;

% [xref,x] = wnoise(3,11,sqrt_snr,init);

% Some trial examples without commands counterpart (more)

% Rand initialization: init = 2055615866;

% Square root of signal to noise ratio: sqrt_snr = 3;

% [xref,x] = wnoise(3,11,sqrt_snr,init);

Matlab上有CANNY算子的库函数啊,直接调用就行了。

我这有VC++的边缘检测算法,很长的。稍微改一下就可以用在Matlab上。

/ 一维高斯分布函数,用于平滑函数中生成的高斯滤波系数

void CFunction::CreatGauss(double sigma, double pdKernel, int pnWidowSize)

{

LONG i;

//数组中心点

int nCenter;

//数组中一点到中心点距离

double dDis;

//中间变量

double dValue;

double dSum;

dSum = 0;

// [-3sigma,3sigma] 以内数据,会覆盖绝大部分滤波系数

pnWidowSize = 1+ 2ceil(3sigma);

nCenter = (pnWidowSize)/2;

pdKernel = new double[pnWidowSize];

//生成高斯数据

for(i=0;i<(pnWidowSize);i++)

{

dDis = (double)(i - nCenter);

dValue = exp(-(1/2)dDisdDis/(sigmasigma))/(sqrt(231415926)sigma);

(pdKernel)[i] = dValue;

dSum+=dValue;

}

//归一化

for(i=0;i<(pnWidowSize);i++)

{

(pdKernel)[i]/=dSum;

}

}

//用高斯滤波器平滑原图像

void CFunction::GaussianSmooth(SIZE sz, LPBYTE pGray, LPBYTE pResult, double sigma)

{

LONG x, y;

LONG i;

//高斯滤波器长度

int nWindowSize;

//窗口长度

int nLen;

//一维高斯滤波器

double pdKernel;

//高斯系数与图像数据的点乘

double dDotMul;

//滤波系数总和

double dWeightSum;

double pdTemp;

pdTemp = new double[szcxszcy];

//产生一维高斯数据

CreatGauss(sigma, &pdKernel, &nWindowSize);

nLen = nWindowSize/2;

//x方向滤波

for(y=0;y<szcy;y++)

{

for(x=0;x<szcx;x++)

{

dDotMul = 0;

dWeightSum = 0;

for(i=(-nLen);i<=nLen;i++)

{

//判断是否在图像内部

if((i+x)>=0 && (i+x)<szcx)

{

dDotMul+=(double)pGray[yszcx+(i+x)] pdKernel[nLen+i];

dWeightSum += pdKernel[nLen+i];

}

}

pdTemp[yszcx+x] = dDotMul/dWeightSum;

}

}

//y方向滤波

for(x=0; x<szcx;x++)

{

for(y=0; y<szcy; y++)

{

dDotMul = 0;

dWeightSum = 0;

for(i=(-nLen);i<=nLen;i++)

{

if((i+y)>=0 && (i+y)< szcy)

{

dDotMul += (double)pdTemp[(y+i)szcx+x]pdKernel[nLen+i];

dWeightSum += pdKernel[nLen+i];

}

}

pResult[yszcx+x] = (unsigned char)(int)dDotMul/dWeightSum;

}

}

delete []pdKernel;

pdKernel = NULL;

delete []pdTemp;

pdTemp = NULL;

}

// 方向导数,求梯度

void CFunction::Grad(SIZE sz, LPBYTE pGray,int pGradX, int pGradY, int pMag)

{

LONG y,x;

//x方向的方向导数

for(y=1;y<szcy-1;y++)

{

for(x=1;x<szcx-1;x++)

{

pGradX[yszcx +x] = (int)( pGray[yszcx+x+1]-pGray[yszcx+ x-1] );

}

}

//y方向方向导数

for(x=1;x<szcx-1;x++)

{

for(y=1;y<szcy-1;y++)

{

pGradY[yszcx +x] = (int)(pGray[(y+1)szcx +x] - pGray[(y-1)szcx +x]);

}

}

//求梯度

//中间变量

double dSqt1;

double dSqt2;

for(y=0; y<szcy; y++)

{

for(x=0; x<szcx; x++)

{ //二阶范数求梯度

dSqt1 = pGradX[yszcx + x]pGradX[yszcx + x];

dSqt2 = pGradY[yszcx + x]pGradY[yszcx + x];

pMag[yszcx+x] = (int)(sqrt(dSqt1+dSqt2)+05);

}

}

}

//非最大抑制

void CFunction::NonmaxSuppress(int pMag, int pGradX, int pGradY, SIZE sz, LPBYTE pNSRst)

{

LONG y,x;

int nPos;

//梯度分量

int gx;

int gy;

//中间变量

int g1,g2,g3,g4;

double weight;

double dTmp,dTmp1,dTmp2;

//设置图像边缘为不可能的分界点

for(x=0;x<szcx;x++)

{

pNSRst[x] = 0;

//pNSRst[(szcy-1)szcx+x] = 0;

pNSRst[szcy-1+x] = 0;

}

for(y=0;y<szcy;y++)

{

pNSRst[yszcx] = 0;

pNSRst[yszcx + szcx-1] = 0;

}

for(y=1;y<szcy-1;y++)

{

for(x=1;x<szcx-1;x++)

{ //当前点

nPos = yszcx + x;

//如果当前像素梯度幅度为0,则不是边界

if(pMag[nPos] == 0)

{

pNSRst[nPos] = 0;

}

else

{ //当前点的梯度幅度

dTmp = pMag[nPos];

//x,y方向导数

gx = pGradX[nPos];

gy = pGradY[nPos];

//如果方向导数y分量比x分量大,说明导数方向趋向于y分量

if(abs(gy) > abs(gx))

{

//计算插值比例

weight = fabs(gx)/fabs(gy);

g2 = pMag[nPos-szcx];

g4 = pMag[nPos+szcx];

//如果x,y两个方向导数的符号相同

//C 为当前像素,与g1-g4 的位置关系为:

//g1 g2

// C

// g4 g3

if(gxgy>0)

{

g1 = pMag[nPos-szcx-1];

g3 = pMag[nPos+szcx+1];

}

//如果x,y两个方向的方向导数方向相反

//C是当前像素,与g1-g4的关系为:

// g2 g1

// C

// g3 g4

else

{

g1 = pMag[nPos-szcx+1];

g3 = pMag[nPos+szcx-1];

}

}

//如果方向导数x分量比y分量大,说明导数的方向趋向于x分量

else

{

//插值比例

weight = fabs(gy)/fabs(gx);

g2 = pMag[nPos+1];

g4 = pMag[nPos-1];

//如果x,y两个方向的方向导数符号相同

//当前像素C与 g1-g4的关系为

// g3

// g4 C g2

// g1

if(gx gy > 0)

{

g1 = pMag[nPos+szcx+1];

g3 = pMag[nPos-szcx-1];

}

//如果x,y两个方向导数的方向相反

// C与g1-g4的关系为

// g1

// g4 C g2

// g3

else

{

g1 = pMag[nPos-szcx+1];

g3 = pMag[nPos+szcx-1];

}

}

//利用 g1-g4 对梯度进行插值

{

dTmp1 = weightg1 + (1-weight)g2;

dTmp2 = weightg3 + (1-weight)g4;

//当前像素的梯度是局部的最大值

//该点可能是边界点

if(dTmp>=dTmp1 && dTmp>=dTmp2)

{

pNSRst[nPos] = 128;

}

else

{

//不可能是边界点

pNSRst[nPos] = 0;

}

}

}

}

}

}

// 统计pMag的直方图,判定阈值

void CFunction::EstimateThreshold(int pMag, SIZE sz, int pThrHigh, int pThrLow, LPBYTE pGray,

double dRatHigh, double dRatLow)

{

LONG y,x,k;

//该数组的大小和梯度值的范围有关,如果采用本程序的算法

//那么梯度的范围不会超过pow(2,10)

int nHist[1024];

//可能边界数

int nEdgeNum;

//最大梯度数

int nMaxMag;

int nHighCount;

nMaxMag = 0;

//初始化

for(k=0;k<1024;k++)

{

nHist[k] = 0;

}

//统计直方图,利用直方图计算阈值

for(y=0;y<szcy;y++)

{

for(x=0;x<szcx;x++)

{

if(pGray[yszcx+x]==128)

{

nHist[pMag[yszcx+x]]++;

}

}

}

nEdgeNum = nHist[0];

nMaxMag = 0;

//统计经过“非最大值抑制”后有多少像素

for(k=1;k<1024;k++)

{

if(nHist[k] != 0)

{

nMaxMag = k;

}

//梯度为0的点是不可能为边界点的

//经过non-maximum suppression后有多少像素

nEdgeNum += nHist[k];

}

//梯度比高阈值pThrHigh 小的像素点总书目

nHighCount = (int)(dRatHigh nEdgeNum + 05);

k=1;

nEdgeNum = nHist[1];

//计算高阈值

while((k<(nMaxMag-1)) && (nEdgeNum < nHighCount))

{

k++;

nEdgeNum += nHist[k];

}

pThrHigh = k;

//低阈值

pThrLow = (int)((pThrHigh) dRatLow + 05);

}

//利用函数寻找边界起点

void CFunction::Hysteresis(int pMag, SIZE sz, double dRatLow, double dRatHigh, LPBYTE pResult)

{

LONG y,x;

int nThrHigh,nThrLow;

int nPos;

//估计TraceEdge 函数需要的低阈值,以及Hysteresis函数使用的高阈值

EstimateThreshold(pMag, sz,&nThrHigh,&nThrLow,pResult,dRatHigh,dRatLow);

//寻找大于dThrHigh的点,这些点用来当作边界点,

//然后用TraceEdge函数跟踪该点对应的边界

for(y=0;y<szcy;y++)

{

for(x=0;x<szcx;x++)

{

nPos = yszcx + x;

//如果该像素是可能的边界点,并且梯度大于高阈值,

//该像素作为一个边界的起点

if((pResult[nPos]==128) && (pMag[nPos] >= nThrHigh))

{

//设置该点为边界点

pResult[nPos] = 255;

TraceEdge(y,x,nThrLow,pResult,pMag,sz);

}

}

}

//其他点已经不可能为边界点

for(y=0;y<szcy;y++)

{

for(x=0;x<szcx;x++)

{

nPos = yszcx + x;

if(pResult[nPos] != 255)

{

pResult[nPos] = 0;

}

}

}

}

//根据Hysteresis 执行的结果,从一个像素点开始搜索,搜索以该像素点为边界起点的一条边界的

//一条边界的所有边界点,函数采用了递归算法

// 从(x,y)坐标出发,进行边界点的跟踪,跟踪只考虑pResult中没有处理并且可能是边界

// 点的像素(=128),像素值为0表明该点不可能是边界点,像素值为255表明该点已经是边界点

void CFunction::TraceEdge(int y, int x, int nThrLow, LPBYTE pResult, int pMag, SIZE sz)

{

//对8邻域像素进行查询

int xNum[8] = {1,1,0,-1,-1,-1,0,1};

int yNum[8] = {0,1,1,1,0,-1,-1,-1};

LONG yy,xx,k; //循环变量

for(k=0;k<8;k++)

{

yy = y+yNum[k];

xx = x+xNum[k];

if(pResult[640 (479 - yy)+xx]==128 && pMag[640 (479 - yy)+xx]>=nThrLow )

{

//该点设为边界点

pResult[640 (479 - yy)+xx] = 255;

//以该点为中心再进行跟踪

TraceEdge(yy,xx,nThrLow,pResult,pMag,sz);

}

}

}

// Canny算子

BOOL CFunction::Canny(LPBYTE m_pDibData,CPoint ptLeft, CPoint ptRight , double sigma, double dRatLow, double dRatHigh)

{

BYTE m_Newdata;//每一步处理后的图像数据

m_Newdata = (BYTE)malloc(maxImage);

memcpy(m_Newdata,(BYTE )m_pDibData,maxImage);

//经过抑制局部像素非最大值的处理后的数据

BYTE pResult;//每一步处理后的图像数据

pResult = (BYTE)malloc(maxImage);

memcpy(pResult,(BYTE )m_pDibData,maxImage);

int pointy,pointx,m,n,i=0;

long Position;

int GradHori;

int GradVert;

//存储结构元素的数组

BYTE array[9]={0};

//设定两个阈值

int nThrHigh,nThrLow;

//梯度分量

int gx;

int gy;

//中间变量

int g1,g2,g3,g4;

double weight;

double dTmp,dTmp1,dTmp2;

int Width,Higth;

Width=ptRightx-ptLeftx+1;

Higth=ptRighty-ptLefty+1;

CSize sz=CSize(Width,Higth);

//x方向导数的指针

int pGradX= new int[maxImage];

memset(pGradX,0,maxImage);

//y方向

int pGradY;

pGradY = new int [maxImage];

memset(pGradY,0,maxImage);

//梯度的幅度

int pGradMag;

pGradMag = new int [maxImage];

//对pGradMag进行初始化

for (pointy = 0;pointy <480;pointy++)

{

for (pointx = 0;pointx <640 ;pointx++)

{

Position=640 (479 - pointy)+pointx;

pGradMag[Position]=m_pDibData[Position];

}

}

//第一步进行高斯平滑器滤波

//进入循环,使用33的结构元素,处理除去第一行和最后一行以及第一列和最后一列。

for (pointy = ptLefty+1;pointy <= ptRighty-1;pointy++)

{

for (pointx = ptLeftx+1;pointx <= ptRightx-1;pointx++)

{

Position=640 (479 - pointy)+pointx;

for (m = 0;m < 3;m++)

{

for (n = 0;n < 3;n++)

{

array[m3+n]=m_pDibData[Position+640(1-m)+n-1];

}

}

GradHori=abs(array[0]+2array[1]+array[2]+2array[3]+4array[4]+2array[5]+array[6]+2array[7]+array[8]);

GradHori=(int)(00625GradHori+05);

if (GradHori>255)

{

m_Newdata[Position]=255;

}

else

m_Newdata[Position]=GradHori;

}

}

//第二步用一阶偏导的有限差分来计算梯度的幅值和方向

//x方向的方向导数

for (pointy = ptLefty+1;pointy <= ptRighty-1;pointy++)

{

for (pointx = ptLeftx+1;pointx <= ptRightx-1;pointx++)

{

pGradX[pointyWidth +pointx]=(int)(m_Newdata[pointyWidth +pointx+1]- m_Newdata[pointyWidth +pointx-1] );

}

}

//y方向方向导数

for (pointx = ptLeftx+1;pointx <= ptRightx-1;pointx++)

{

for (pointy = ptLefty+1;pointy <= ptRighty-1;pointy++)

{

pGradY[pointyWidth +pointx] = (int)(m_Newdata[(pointy+1)Width +pointx] - m_Newdata[(pointy-1)Width +pointx]);

}

}

//求梯度

for (pointy = ptLefty+1;pointy <= ptRighty-1;pointy++)

{

for (pointx = ptLeftx+1;pointx <= ptRightx-1;pointx++)

{

Position=640 (479 - pointy)+pointx;

for (m = 0;m < 3;m++)

{

for (n = 0;n < 3;n++)

{

array[m3+n]=m_Newdata[Position+640(1-m)+n-1];

}

}

GradHori=abs((-1)array[0]+(-2)array[3]+2array[7]+array[8]);

GradVert=abs((-1)array[0]-2array[1]+2array[5]+array[8]);

GradHori =(int)((float)sqrt(pow(GradHori,2)+pow(GradVert,2))+05);

pGradMag[Position]=GradHori;

}

}

//针对第一行的像素点及最后一行的像素点

for (pointx = ptLeftx;pointx <= ptRightx;pointx++)

{

Position=640 (479 - ptLefty)+pointx;

pGradMag[Position]=0;

Position=640 (479 - ptRighty)+pointx;

pGradMag[Position]=0;

}

//针对第一列以及最后一列的像素点

for (pointy = ptLefty+1;pointy <= ptRighty-1;pointy++)

{

Position=640 (479 - pointy)+ptLeftx;

pGradMag[Position]=0;

Position=640 (479 - pointy)+ptRightx;

pGradMag[Position]=0;

}

//第三步进行抑制梯度图中的非局部极值点的像素

for (pointy = ptLefty+1;pointy <= ptRighty-1;pointy++)

{

for (pointx = ptLeftx+1;pointx <= ptRightx-1;pointx++)

{ //当前点

Position=640 (479 - pointy)+pointx;

//如果当前像素梯度幅度为0,则不是边界点

if(pGradMag[Position] == 0)

{

pGradMag[Position] = 0;

}

else

{ //当前点的梯度幅度

dTmp = pGradMag[Position];

//x,y方向导数

gx = pGradX[Position];

gy = pGradY[Position];

//如果方向导数y分量比x分量大,说明导数方向趋向于y分量

if(abs(gy) > abs(gx))

{

//计算插值比例

weight = fabs(gx)/fabs(gy);

g2 = pGradMag[Position-640];

g4 = pGradMag[Position+640];

//如果x,y两个方向导数的符号相同

//C 为当前像素,与g1-g4 的位置关系为:

//g1 g2

// C

// g4 g3

if(gxgy>0)

{

g1 = pGradMag[Position-640-1];

g3 = pGradMag[Position+640+1];

}

//如果x,y两个方向的方向导数方向相反

//C是当前像素,与g1-g4的关系为:

// g2 g1

// C

// g3 g4

else

{

g1 = pGradMag[Position-640+1];

g3 = pGradMag[Position+640-1];

}

}

//如果方向导数x分量比y分量大,说明导数的方向趋向于x分量

else

{

//插值比例

weight = fabs(gy)/fabs(gx);

g2 = pGradMag[Position+1];

g4 = pGradMag[Position-1];

//如果x,y两个方向的方向导数符号相同

//当前像素C与 g1-g4的关系为

// g3

// g4 C g2

// g1

if(gx gy > 0)

{

g1 = pGradMag[Position+640+1];

g3 = pGradMag[Position-640-1];

}

//如果x,y两个方向导数的方向相反

// C与g1-g4的关系为

// g1

// g4 C g2

// g3

else

{

g1 =pGradMag[Position-640+1];

g3 =pGradMag[Position+640-1];

}

}

//利用 g1-g4 对梯度进行插值

{

dTmp1 = weightg1 + (1-weight)g2;

dTmp2 = weightg3 + (1-weight)g4;

//当前像素的梯度是局部的最大值

//该点可能是边界点

if(dTmp>=dTmp1 && dTmp>=dTmp2)

{

pResult[Position] = 128;

}

else

{

//不可能是边界点

pResult[Position] = 0;

}

}

}

}

}

//第四步根据梯度计算及经过非最大值得印制后的结果设定阈值

//估计TraceEdge 函数需要的低阈值,函数使用的高阈值

EstimateThreshold(pGradMag, sz,&nThrHigh,&nThrLow,pResult,dRatHigh,dRatLow);

//寻找大于dThrHigh的点,这些点用来当作边界点,

//然后用TraceEdge函数跟踪该点对应的边界

for (pointy = ptLefty+1;pointy <= ptRighty-1;pointy++)

{

for (pointx = ptLeftx+1;pointx <= ptRightx-1;pointx++)

{

Position=640 (479 - pointy)+pointx;

//如果该像素是可能的边界点,并且梯度大于高阈值,

//该像素作为一个边界的起点

if((pResult[Position]==128) && (pGradMag[Position] >= nThrHigh))

{

//设置该点为边界点

pResult[Position] = 255;

TraceEdge(pointy,pointx,nThrLow,pResult,pGradMag,sz);

}

}

}

//其他点已经不可能为边界点

for (pointy = ptLefty+1;pointy <= ptRighty-1;pointy++)

{

for (pointx = ptLeftx+1;pointx <= ptRightx-1;pointx++)

{

Position=640 (479 - pointy)+pointx;

if(pResult[Position] != 255)

{

pResult[Position] = 0;

}

}

}

//计算方向导数和梯度的幅度

// Grad(sz,pGaussSmooth,pGradX,pGradY,pGradMag);

//应用非最大抑制

// NonmaxSuppress(pGradMag,pGradX,pGradY,sz,pResult);

//应用Hysteresis,找到所有边界

// Hysteresis(pGradMag,sz,dRatLow,dRatHigh,pResult);

memcpy(m_pDibData,(BYTE )pResult,maxImage);

delete[] pResult;

pResult = NULL;

delete[] pGradX;

pGradX = NULL;

delete[] pGradY;

pGradY = NULL;

delete[] pGradMag;

pGradMag = NULL;

delete[] m_Newdata;

m_Newdata = NULL;

return true;

}

f就是你导入的rgb。

首先按照上面的代码建立一个m文件,将文件存盘,命名为 colorgradm

然后在matlab命令窗口输入如下命令:

>>f=imread('testjpg') %这里的testjpg是文件名

>> [VG,A,PPT]=colorgrad(f,0)

>>figure; imshow(PPT);

以上就是关于在matlab软件中用拉普拉斯算子和canny算子进行边缘检测的程序全部的内容,包括:在matlab软件中用拉普拉斯算子和canny算子进行边缘检测的程序、labview 边缘检测 详细教程、图像的亚像素边缘检测 MATLAB代码等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/10135335.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-05
下一篇 2023-05-05

发表评论

登录后才能评论

评论列表(0条)

保存