舵机的构造
舵机主要是由外壳、电路板、无核心马达、齿轮与位置检测器所构成。其工作原理是由接收机发出讯号给舵机,经由电路板上的
IC判断转动方向,再驱动无核心马达开始转动,透过减速齿轮将动力传至摆臂,同时由位置检测器送回讯号,判断是否已经到达定位。位置检测器其实就是可变电阻,当舵机转动时电阻值也会随之改变,藉由检测电阻值便可知转动的角度。一般的伺服马达是将细铜线缠绕在三极转子上,当电流流经线圈时便会产生磁场,与转子外围的磁铁产生排斥作用,进而产生转动的作用力。依据物理学原理,物体的转动惯量与质量成正比,因此要转动质量愈大的物体,所需的作用力也愈大。舵机为求转速快、耗电小,于是将细铜线缠绕成极薄的中空圆柱体,形成一个重量极轻的五极中空转子,并将磁铁置於圆柱体内,这就是无核心马达。
为了适合不同的工作环境,有防水及防尘设计的舵机;并且因应不同的负载需求,舵机的齿轮有塑胶及金属之区分,金属齿轮的舵机一般皆为大扭力及高速型,具有齿轮不会因负载过大而崩牙的优点。较高级的舵机会装置滚珠轴承,使得转动时能更轻快精准。滚珠轴承有一颗及二颗的区别,当然是二颗的比较好。目前新推出的
FET
舵机,主要是采用
FET(Field
Effect
Transistor)场效电晶体。FET
具有内阻低的优点,因此电流损耗比一般电晶体少。
技术规格
厂商所提供的舵机规格资料,都会包含外形尺寸(mm)、扭力(kg-cm)、速度(秒/60°)、测试电压(V)及重量(g)等基本资料。扭力的单位是
kg-cm,意思是在摆臂长度
1
公分处,能吊起几公斤重的物体。这就是力臂的观念,因此摆臂长度愈长,则扭力愈小。速度的单位是
sec/60°,意思是舵机转动
60°所需要的时间。
电压会直接影响舵机的性能,例如
Futaba
S-9001
在
48V
时扭力为
39kg、速度为
022
秒,在
60V
时扭力为
52kg、速度为
018
秒。若无特别注明,JR
的舵机都是以
48V
为测试电压,Futaba则是以
60V
作为测试电压。所谓天下没有白吃的午餐,速度快、扭力大的舵机,除了价格贵,还会伴随著高耗电的特点。因此使用高级的舵机时,务必搭配高品质、高容量的镍镉电池,能提供稳定且充裕的电流,才可发挥舵机应有的性能。
吴鉴鹰单片机实战精讲中有相关问题的解释。
在单片机开发过程中,从硬件设计到软件设计几乎是开发者针对本系统特点亲自完成的。这样虽然可以降低系统成本,提高系统的适应性,但是每个系统的调试占去了总开发时间的2/3,可见调试的工作量比较大。单片机系统的硬件调试和软件调试是不能分开的,许多硬件错误是在软件调试中被发现和纠正的。但通常是先排除明显的硬件故障以后,再和软件结合起来调试以进一步排除故障。可见硬件的调试是基础,如果硬件调试不通过,软件设计则是无从做起。本文结合作者在单片机开发过程中体会,讨论硬件调试的技巧。
当硬件设计从布线到焊接安装完成之后,就开始进入硬件调试阶段,调试大体分为以下几步。
1 硬件静态的调试
11排除逻辑故障
这类故障往往由于设计和加工制板过程中工艺性错误所造成的。主要包括错线、开路、短路。排除的方法是首先将加工的印制板认真对照原理图,看两者是否一致。应特别注意电源系统检查,以防止电源短路和极性错误,并重点检查系统总线(地址总线、数据总线和控制总线)是否存在相互之间短路或与其它信号线路短路。必要时利用数字万用表的短路测试功能,可以缩短排错时间。
12排除元器件失效
造成这类错误的原因有两个:一个是元器件买来时就已坏了;另一个是由于安装错误,造成器件烧坏。可以采取检查元器件与设计要求的型号、规格和安装是否一致。在保证安装无误后,用替换方法排除错误。
13排除电源故障
在通电前,一定要检查电源电压的幅值和极性,否则很容易造成集成块损坏。加电后检查各插件上引脚的电位,一般先检查VCC与GND之间电位,若在5V~48V之间属正常。若有高压,联机仿真器调试时,将会损坏仿真器等,有时会使应用系统中的集成块发热损坏。
2 联机仿真调试
联机仿真必须借助仿真开发装置、示波器、万用表等工具。这些工具是单片机开发的最基本工具。
信号线是联络8031和外部器件的纽带,如果信号线连结错误或时序不对,那么都会造成对外围电路读写错误。51系列单片机的信号线大体分为读、写信号线、片选信号线、时钟信号线、外部程序存贮器读选通信号(PSEN)、地址锁存信号(ALE)、复位信号等几大类。这些信号大多属于脉冲信号,对于脉冲信号借助示波器(这里指通用示波器)用常规方法很难观测到,必须采取一定措施才能观测到。应该利用软件编程的方法来实现。例如对片选信号,运行下面的小程序就可以检测出译码片选信号是否正常。
MAIN:MOVDPTR,#DPTR
;将地址送入DPTR
MOVXA,@DPTR
;将译码地址外RAM中的内容送入ACC
NOP;适当延时
SJMPMAIN;循环
执行程序后,就可以利用示波器观察芯片的片选信号引出脚(用示波器扫描时间为1μs/每格档),这时应看到周期为数微秒的负脉冲波形,若看不到则说明译码信号有错误。
对于电平类信号,观测起来就比较容易。例如对复位信号观测就可以直接利用示波器,当按下复位键时,可以看到8031的复位引脚将变为高电平;一旦松开,电平将变低。
总而言之,对于脉冲触发类的信号我们要用软件来配合,并要把程序编为死循环,再利用示波器观察;对于电平类触发信号,可以直接用示波器观察。
下面结合在自动配料控制系统中键盘、显示部分的调试过程来加以说明。本系统中的键盘、显示部分都是由并行口芯片8155扩展而成的。8155属于可编程器件,因而很难划分硬件和软件,往往在调试中即使电路安装正确没有一定的指令去指挥它工作,也是无法发现硬件的故障。因此要使用一些简单的调试程序来确定硬件的组装是否正确、功能是否完整。在本系统中采取了先对显示器调试,再对键盘调试。
首先增量式PID是位置式PID的演化。它们的主要区别在于:
1:增量式PID的计算量相对较小,因为是计算的是增量,所以对执行部件的扰动较小,一般采用带死区的控制。对于智能车的舵机控制增量式PD是不错的选择,为什么不用积分I呢?不仅仅是因为积分滞后特性,更重要的是因为根据对转向机构进行建模,得出的模型中就已经含有积分环节,所以转向舵机建议采用PD。
2:位置式PID计算量比增量式PID稍微多一点。一般用于直流电机的控制,对于智能车的驱动电机控制是一个不错的经典控制算法。
希望对你有所帮助。
1、概述
舵机最早出现在航模运动中。在航空模型中,飞行机的飞行姿态是通过调节发动机和各个控制舵面来实现的。举个简单的四通飞机来说,飞机上有以下几个地方需要控制:
1发动机进气量,来控制发动机的拉力(或推力);
2副翼舵面(安装在飞机机翼后缘),用来控制飞机的横滚运动;
3水平尾舵面,用来控制飞机的俯仰角;
4垂直尾舵面,用来控制飞机的偏航角;
遥控器有四个通道,分别对应四个舵机,而舵机又通过连杆等传动元件带动舵面的转动,从而改变飞机的运动状态。舵机因此得名:控制舵面的伺服电机。
不仅在航模飞机中,在其他的模型运动中都可以看到它的应用:船模上用来控制尾舵,车模中用来转向等等。由此可见,凡是需要 *** 作性动作时都可以用舵机来实现。
2、结构和控制
一般来讲,舵机主要由以下几个部分组成, 舵盘、减速齿轮组、位置反馈电位计5k、直流电机、控制电路板等。
工作原理:控制电路板接受来自信号线的控制信号(具体信号待会再讲),控制电机转动,电机带动一系列齿轮组,减速后传动至输出舵盘。舵机的输出轴和位置反馈电位计是相连的,舵盘转动的同时,带动位置反馈电位计,电位计将输出一个电压信号到控制电路板,进行反馈,然后控制电路板根据所在位置决定电机的转动方向和速度,从而达到目标停止。
舵机的基本结构是这样,但实现起来有很多种。例如电机就有有刷和无刷之分,齿轮有塑料和金属之分,输出轴有滑动和滚动之分,壳体有塑料和铝合金之分,速度有快速和慢速之分,体积有大中小三种之分等等,组合不同,价格也千差万别。例如,其中小舵机一般称作微舵,同种材料的条件下是中型的一倍多,金属齿轮是塑料齿轮的一倍多。需要根据需要选用不同类型。
舵机的输入线共有三条,红色中间,是电源线,一边黑色的是地线,这辆根线给舵机提供最基本的能源保证,主要是电机的转动消耗。电源有两种规格,一是48V,一是60V,分别对应不同的转矩标准,即输出力矩不同,60V对应的要大一些,具体看应用条件;另外一根线是控制信号线,Futaba的一般为白色,JR的一般为桔**。另外要注意一点,SANWA的某些型号的舵机引线电源线在边上而不是中间,需要辨认。但记住红色为电源,黑色为地线,一般不会搞错。
舵机的控制信号为周期是20ms的脉宽调制(PWM)信号,其中脉冲宽度从05ms-25ms,相对应舵盘的位置为0-180度,呈线性变化。也就是说,给它提供一定的脉宽,它的输出轴就会保持在一个相对应的角度上,无论外界转矩怎样改变,直到给它提供一个另外宽度的脉冲信号,它才会改变输出角度到新的对应的位置上。舵机内部有一个基准电路,产生周期20ms,宽度15ms的基准信号,有一个比较器,将外加信号与基准信号相比较,判断出方向和大小,从而产生电机的转动信号。由此可见,舵机是一种位置伺服的驱动器,转动范围不能超过180度,适用于那些需要角度不断变化并可以保持的驱动当中。比方说机器人的关节、飞机的舵面等。
常见的舵机厂家有:日本的Futaba、JR、SANWA等,国产的有北京的新幻想、吉林的振华等。现举Futaba S3003来介绍相关参数,以供大家设计时选用。之所以用3003是因为这个型号是市场上最常见的,也是价格相对较便宜的一种(以下数据摘自Futaba产品手册)。
尺 寸(Dimensions): 404×198×360 mm
重 量(Weight): 372 g
工作速度(Operating speed):023 sec/60°(48V)
019 sec/60°(60V)
输出力矩(Output torque): 32 kgcm (48V)
41 kgcm (60V)
由此可见,舵机具有以下一些特点:
>体积紧凑,便于安装;
>输出力矩大,稳定性好;
>控制简单,便于和数字系统接口;
正是因为舵机有很多优点,所以,现在不仅仅应用在航模运动中,已经扩展到各种机电产品中来,在机器人控制中应用也越来越广泛。
3、用单片机来控制
正是舵机的控制信号是一个脉宽调制信号,所以很方便和数字系统进行接口。只要能产生标准的控制信号的数字设备都可以用来控制舵机,比方PLC、单片机等。这里介绍利用51系列单片机产生舵机的控制信号来进行控制的方法,编程语言为C51。之所以介绍这种方法只是因为笔者用2051实现过,本着负责的态度,所以敢在这里写出来。程序用的是我的四足步行机器人,有删改。单片机并不是控制舵机的最好的方法,希望在此能起到抛砖引玉的作用。
2051有两个16位的内部计数器,我们就用它来产生周期20 ms的脉冲信号,根据需要,改变输出脉宽。基本思路如下(请对照下面的程序):
我用的晶振频率为12M,2051一个时钟周期为12个晶振周期,正好是1/1000 ms,计数器每隔1/1000 ms计一次数。以计数器1为例,先设定脉宽的初始值,程序中初始为15ms,在for循环中可以随时通过改变a值来改变,然后设定计数器计数初始值为a,并置输出p12为高位。当计数结束时,触发计数器溢出中断函数,就是void timer0(void) interrupt 1 using1 ,在子函数中,改变输出p12为反相(此时跳为低位),在用20000(代表20ms周期)减去高位用的时间a,就是本周期中低位的时间,c=20000-a,并设定此时的计数器初值为c,直到定时器再次产生溢出中断,重复上一过程。
舵机电机的转动,通过齿轮组减速后,同时驱动转盘和标准脉冲宽度调节电位器转动。直到标准脉冲与输入脉冲宽度完全相同时,差值脉冲消失时才会停止转动。
舵机是指在自动驾驶仪中 *** 纵飞机舵面( *** 纵面)转动的一种执行部件。分有:①电动舵机,由电动机、传动部件和离合器组成。接受自动驾驶仪的指令信号而工作,当人工驾驶飞机时,由于离合器保持脱开而传动部件不发生作用。②液压舵机,由液压作动器和旁通活门组成。当人工驾驶飞机时,旁通活门打开,由于作动器活塞两边的液压互相连通而不妨害人工 *** 纵。此外,还有电动液压舵机,简称“电液舵机”。舵机的大小由外舾装按照船级社的规范决定,选型时主要考虑扭矩大小。如何审慎地选择经济且合乎需求的舵机,也是一门不可轻忽的学问。(图/文/摄: 邹婷1) 星瑞 理想ONE Model Y Model X 高合HiPhi X 零跑T03 @2019
舵机和传感器都可以使用正反馈的原理进行控制和调节。
舵机是一种通过信号控制角度的电机,可以实现精确的位置控制。在控制舵机时,通常使用的是PWM信号进行控制。PWM信号的占空比可以控制舵机的转动角度和速度。在舵机转动的过程中,实际角度与目标角度之间存在误差。为了减小误差,可以使用正反馈的原理,将舵机当前的位置信息反馈给控制器,通过比较当前位置和目标位置之间的误差,调整PWM信号的占空比,控制舵机转动到目标位置,从而实现更精确的位置控制。
传感器是一种用于测量物理量的设备,例如温度、湿度、压力、光强等等。在使用传感器进行测量时,通常需要校准传感器的灵敏度和精度。为了实现更精确的测量,可以使用正反馈的原理,将传感器输出的数据反馈给控制器,通过比较实际测量值和目标值之间的误差,调整传感器的灵敏度和精度,从而实现更精确的测量结果。
需要注意的是,使用正反馈的原理进行控制和调节时,需要根据具体的应用场景和需求进行选择和设计,并进行合理的参数设置和调整,以保证系统的稳定性和可靠性。
给你个Step 7写的PID控制的FC模块。带"_IN"与带"_OUT"的变量,如果前缀是一样的,要求连接同一个变量。
FUNCTION FC1 : VOID
VAR_INPUT
Run:BOOL; //True-运行,False-停止
Auto:BOOL; //True-自动,False-手动
ISW:BOOL; //True-积分有效,False-积分无效
DSW:BOOL; //True-微分有效,False-微分无效
SetMV:REAL; //手动时的开度设定值
SVSW:REAL; //当设定值低于SVSW时,开度为零
PV:REAL; //测量值
SV:REAL; //设定值
DeadBand:REAL; //死区大小
PBW:REAL; //比例带大小
IW:REAL; //积分带大小
DW:REAL; //微分带大小
dErr_IN:REAL; //误差累积
LastPV_IN:REAL; //上一控制周期的测量值
END_VAR
VAR_OUTPUT
MV:REAL; //输出开度
dErr_OUT:REAL; //误差累积
LastPV_OUT:REAL;//上一控制周期的测量值
END_VAR
VAR
Err:REAL; //误差
dErr:REAL; //误差累积
PBH:REAL; //比例带上限
PBL:REAL; //比例带下限
PVC:REAL; //测量值在一个控制周期内的变化率,即测量值变化速率
P:REAL; //比例项
I:REAL; //积分项
D:REAL; //微分项
END_VAR
IF Run=1 THEN
IF Auto=1 THEN
IF SV>=SVSW THEN
Err:=SV-PV;
PBH:=SV+PBW;
PBL:=SV-PBW;
IF PV<PBL THEN
MV:=1;
ELSIF PV>PBH THEN
MV:=0;
ELSE
P:=(PBH-PV)/(PBH-PBL); //计算比例项
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////以下为积分项的计算//////////////////////////////////////////////////////////////
IF ISW=1 THEN
dErr:=dErr_IN;
IF (PV<(SV-DeadBand)) OR (PV>(SV+DeadBand)) THEN
IF (dErr+Err)<(0-IW) THEN
dErr:=0-IW;
ELSIF (dErr+Err)>IW THEN
dErr:=IW;
ELSE
dErr:=dErr+Err;
END_IF;
END_IF;
I:=dErr/IW;
dErr_OUT:=dErr;
ELSE
I:=0;
END_IF;
/////////////////////////////////////////////以上为积分项的计算//////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////以下为微分项的计算//////////////////////////////////////////////////////////////
IF DSW=1 THEN
PVC:=LastPV_IN-PV;
D:=PVC/DW;
LastPV_OUT:=PV;
ELSE
D:=0;
END_IF;
/////////////////////////////////////////////以上为微分项的计算//////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
IF (P+I+D)>1 THEN
MV:=1;
ELSIF (P+I+D)<0 THEN
MV:=0;
ELSE
MV:=P+I+D;
END_IF;
END_IF;
ELSE
MV:=0;
END_IF;
ELSE
MV:=SetMV;
END_IF;
ELSE
MV:=0;
END_IF;
END_FUNCTION
以上就是关于船用舵机的工作原理全部的内容,包括:船用舵机的工作原理、51单片机控制舵机问题、我不懂位置式PID和增量式PID的区别,我要控制电机实现智能车跑,要用哪种好啊等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)