python代码转化为sas代码

python代码转化为sas代码,第1张

,Python 和 SAS 是两个很常用的数据挖掘工具。Python 开源、免费、有丰富的三方库,一般在互联网公司广泛使用。而SAS需付费,且费用较高,一般互联网公司无法承担,更多的是在银行等传统金融机构中使用,不过这两年由于Python太火,原本使用SAS的也开始逐渐转向Python了。

拥抱开源,越来越多的爱好者造出优秀的Python轮子,比如当下比较流行的万金油模型Xgboost、LightGBM,在各种竞赛的top级方案中均有被使用。而SAS的脚步就比较慢了,对于一些比较新的东西都无法直接提供,所以对于那些使用SAS的朋友,就很难受了。

一直以来很多粉丝问过东哥这个问题:有没有一种可以将Python模型转成SAS的工具?

因为我本身是两个技能都具备的,实际工作中一般都是配合使用,也很少想过进行转换。但是,最近东哥逛技术论坛刚好发现了一个骚 *** 作,借助Python的三方库m2cgen和Python脚本即可完成Python模型到SAS的转换。

m2cgen是什么?

m2cgen是一个Python的第三方库,主要功能就是将Python训练过的模型转换为其它语言,比如 R 和 VBA。遗憾的是,目前m2cgen尚不支持SAS,但这并不影响我们最终转换为SAS。

我们仍然使用m2cgen,需要借助它间接转换成SAS。具体的方案就是先将Python模型转换为VBA代码,然后再将VBA代码更改为 SAS脚本,曲线救国。

如何使用m2cgen?

我直接用一个例子说明下如何 *** 作。

数据我们使用sklearn自带的iris dataset,链接如下:

The Iris Dataset — scikit-learn 111 documentation

下面,演示一下如何将Python的XGBoost模型转成SAS代码。

首先导入所需的库包和数据。

# 导入库

import pandas as pd

import numpy as np

import os

import re

from sklearn import datasets

from xgboost import XGBClassifier

from sklearnmodel_selection import train_test_split

from sklearnmetrics import accuracy_score

import m2cgen as m2c

# 导入数据

iris = datasetsload_iris()

X = irisdata

Y = iristarget

登录后复制

然后,我们划分数据集,直接扔进XGBoost里面,建立base模型。

# 划分数据为训练集和测试集

seed = 2020

test_size = 03

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=test_size, random_state=seed)

# 训练数据

model = XGBClassifier()

modelfit(X_train, y_train)

登录后复制

然后,再将XGBoost模型转换为VBA。使用m2cgen的export_to_visual_basic方法就可以直接转成VBA了。转换成其他语言脚本也是同理,非常简单。

code = m2cexport_to_visual_basic(model, function_name = 'pred')

登录后复制

核心的骚 *** 作来了!

m2cgen不支持SAS,但我们可以把VBA代码稍加改动,就能变成符合SAS标准的代码了。而这个改动也无需手动一个个改,写一段Python脚本即可实现VBA脚本转换为SAS脚本。

改动的地方不多,主要包括:删除在SAS环境中不能使用的代码,像上面结果中的Module xxx,Function yyy ,Dim var Z As Double,还有在语句结尾加上;,这些为的就是遵循SAS的语法规则。

下面就是转换的Python脚本,可以自动执行上面所说的转换 *** 作。

# 1、移除SAS中不能使用的代码

code = resub('Dim var As Double', '', code)

code = resub('End If', '', code)

# 下面 *** 作将修改成符合SAS的代码

# 2、修改起始

code = resub('Module Model\nFunction pred(ByRef inputVector() As Double) As Double()\n',

'DATA pred_result;\nSET dataset_name;', code)

# 3、修改结尾

code = resub('End Function\nEnd Module\n', 'RUN;', code)

# 4、在结尾加上分号';'

all_match_list = refindall('[0-9]+\n', code)

for idx in range(len(all_match_list)):

original_str = all_match_list[idx]

new_str = all_match_list[idx][:-1]+';\n'

code = codereplace(original_str, new_str)

all_match_list = refindall(')\n', code)

for idx in range(len(all_match_list)):

original_str = all_match_list[idx]

new_str = all_match_list[idx][:-1]+';\n'

code = codereplace(original_str, new_str)

# 用var来替代inputVector

dictionary = {'inputVector(0)':'sepal_length',

'inputVector(1)':'sepal_width',

'inputVector(2)':'petal_length',

'inputVector(3)':'petal_width'}

for key in dictionarykeys():

code = codereplace(key, dictionary[key])

# 修改预测标签

code = resub('MathExp', 'Exp', code)

code = resub('pred = \n', '', code)

temp_var_list = refindall(r"var[0-9]+(\d)", code)

for var_idx in range(len(temp_var_list)):

code = resub(resub('\(', '\(', resub('\)', '\)', temp_var_list[var_idx])), iristarget_names[var_idx]+'_prob', code)

登录后复制

对以上脚本分步解释说明一下。

1、开头、结尾、输出名称

前三个部分非常简单。使用正则表达式删除多余的行,然后将脚本的开头更改为DATA pred_result; \ nSETdataset_name;。

使用过SAS的同学就很熟悉了,pred_result是运行SAS脚本后的输出表名称,dataset_name是我们需要预测的输入表名称。

最后再将脚本的结尾更改为RUN;。

# 移除SAS中不能使用的代码

code = resub('Dim var As Double', '', code)

code = resub('End If', '', code)

# 下面 *** 作将修改成符合SAS的代码

# 修改起始

code = resub('Module Model\nFunction pred(ByRef inputVector() As Double) As Double()\n',

'DATA pred_result;\nSET dataset_name;', code)

# 修改结尾

code = resub('End Function\nEnd Module\n', 'RUN;', code)

登录后复制

2、语句末尾添加分号

为遵循SAS中的语法规则,还需将每个语句的结尾加上;。仍用正则表达式,然后for循环在每一行最后添加字符;即可。

# 在结尾加上分号';'

all_match_list = refindall('[0-9]+\n', code)

for idx in range(len(all_match_list)):

original_str = all_match_list[idx]

new_str = all_match_list[idx][:-1]+';\n'

code = codereplace(original_str, new_str)

all_match_list = refindall(')\n', code)

for idx in range(len(all_match_list)):

original_str = all_match_list[idx]

new_str = all_match_list[idx][:-1]+';\n'

code = codereplace(original_str, new_str)

登录后复制

3、映射变量名称

使用字典将InputVector与变量名称映射到输入数据集中,一次性更改所有InputVector。

# 用var来替代inputVector

dictionary = {'inputVector(0)':'sepal_length',

'inputVector(1)':'sepal_width',

'inputVector(2)':'petal_length',

'inputVector(3)':'petal_width'}

for key in dictionarykeys():

code = codereplace(key, dictionary[key])

登录后复制

4、映射变量名称

最后一步就是更改预测标签。

# 修改预测标签

code = resub('MathExp', 'Exp', code)

code = resub('pred = \n', '', code)

temp_var_list = refindall(r"var[0-9]+(\d)", code)

for var_idx in range(len(temp_var_list)):

code = resub(resub('\(', '\(', resub('\)', '\)', temp_var_list[var_idx])), iristarget_names[var_idx]+'_prob', code)

登录后复制

然后保存sas模型文件。

#保存输出

vb = open('vb1sas', 'w')

vbwrite(code)

vbclose()

登录后复制

最后,为了验证sas脚本是否正确,我们将sas模型的预测结果和Python的结果进行一下对比。

# python 预测

python_pred = pdDataFrame(modelpredict_proba(X_test))

python_predcolumns = ['setosa_prob','versicolor_prob','virginica_prob']

python_pred

# sas 预测

sas_pred = pdread_csv('pred_resultcsv')

sas_pred = sas_prediloc[:,-3:]

sas_pred

(abs(python_pred - sas_pred) > 000001)sum()

登录后复制

可以看到,两个预测的结果基本上一样,基本没问题,我们就可以在sas中跑xgboost模型了。

总结

上面只是个最简单的示例,没有对特征处理。对于复杂的建模过程,比如很多特征工程,那就要对Python脚本进一步调整了。

以上就是本次分享的所有内容,如果你觉得文章还不错,欢迎关注公众号:Python编程学习圈,每日干货分享,发送“J”还可领取大量学习资料,内容覆盖Python电子书、教程、数据库编程、Django,爬虫,云计算等等。或是前往编程学习网,了解更多编程技术知识。

python

机器学习

数据挖掘

视频教程-完整的Python和SAS数据分析-大数据

422阅读·0评论·0点赞

2020年5月28日

python 访问sas 逻辑库,SAS | 逻辑库和SAS数据集

460阅读·0评论·0点赞

2021年4月26日

python学习笔记---linux/windows调用sas程序

875阅读·0评论·0点赞

2019年10月24日

python可以代替sas_Python、 R 语言、SAS、SPSS 优缺点比较?(转)

604阅读·0评论·1点赞

2020年12月17日

python 访问sas 逻辑库_SAS编程基础 - 逻辑库和数据集

138阅读·0评论·0点赞

2020年12月9日

服务器部署sas_如何在阿里云SAS上部署WordPress网站

1429阅读·0评论·0点赞

2020年8月29日

python和sas配合使用_太骚了!Python模型完美切换SAS,还能这么玩。。

1963阅读·0评论·2点赞

2021年1月14日

python导入sas数据集_将变量从SAS传递到Python

344阅读·0评论·0点赞

2021年2月3日

python 访问sas 逻辑库_SAS岩论 | 在Jupyter Notebook中使用SAS

429阅读·0评论·0点赞

2020年12月9日

#sas建模-建模入门介绍

2257阅读·0评论·2点赞

2019年9月18日

#sas建模-建模过程介绍

2805阅读·1评论·0点赞

2019年9月18日

python调用sas_SAS日常使用的语句预定的python表达

370阅读·0评论·0点赞

2020年12月8日

python读取sas数据集_SASpy模块,利用Python *** 作SAS

1432阅读·0评论·0点赞

2020年11月26日

python可以代替sas,像SAS一样转置的python数据帧

156阅读·0评论·0点赞

2021年4月27日

sas和python的区别 知乎_银行业为什么喜欢用 sas 而不是 python?

1559阅读·0评论·0点赞

2020年12月9日

python和sas代码编写_如何从SAS到python编写if语句

329阅读·0评论·0点赞

2021年1月29日

saspython知乎_pyt

尤其在工作中需要处理大批量的数据或需要借助SAS进行多任务并行处理的时候,往往有对SAS程序设定自动运行的需求。

下面对其中的一种方法进行举例介绍。

步骤1:

建程序存放目录D:\temp

测试程序如下:

proc   export  data =sashelpclass

 outfile= "D:\temp\classxls"

label dbms=excelcsreplace;

      sheet="class";

run ;

步骤2 :

建立批处理程序D:\temp\ testbat

程序内容如下:

"C:\ProgramFiles\SASHome\SASFoundation\93\sasexe" -sysin d:\temp\testsas -logd:\temp\testlog

注:上述路径均需改为自己的本地路径。

步骤3 :

设定程序运行任务和执行周期

控制面板à管理工具à任务计划程序à创建基本任务à完成设定

(注:运行程序运行的是bat,而不是sas。这个是在设定的时候需要注意的)

以上就是关于python代码转化为sas代码全部的内容,包括:python代码转化为sas代码、SAS怎么定时运行、等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/10137579.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-05
下一篇 2023-05-05

发表评论

登录后才能评论

评论列表(0条)

保存