人工智能服务器需要怎样的配置?

人工智能服务器需要怎样的配置?,第1张

人工智能服务器应该需要无与伦比的浮点运算能力,最起码也要配置两个万兆网口、10个SATA端口、双路CPU插槽和IPMI20远程管理模块,集高性能计算、大容量存储和先进性管理于一体,与传统服务器相比性能更强,可管理性更高。
还有,人工智能服务器的算力要求也比较高,听说十次方算力平台就提供这种超算服务,还是免费使用的,有兴趣也可以去咨询下。

由于人工智能类的编程问题通常比一般的编程问题难度要高很多,针对人工智能领域设计的语言也有不少, 比如说Prolog , 这是一个建立在逻辑推理上的编程语言,通常用于处理比较复杂的逻辑推理问题,而逻辑推理问题通常看上去都比较智能。
至于人工智能机器人,本质上不过是这俩种技术的结合。从机器的角度来说, 它通常不过是一台长的很像人类的机器而已。但是从另一方面来说,理想中的人工智能机器人应该具备诸如人脸识别,语音识别,逻辑推理,问题等功能,从这个角度看的话,它就是一台运行着人工智能程序的人形电脑而已,至于实现这些功能的编程语言,和在服务器上实现这些功能的语言没有任何差别。

人工智能在未来的发展潜力非常大,特别是将其运用在工业发展上。而人工智能是需要进行编写的,一般来说,人工智能需要3大部分组成。最重要的就是其核心算法。然后是数据库。最后是功能代码。一般的程序员不会直接开发核心算法,而是利用已经有的核心算法,开发出数据库和功能代码。当然也有类似于拉米罗这类大神,选择从核心算法开始搭建。比如其大家的鸭树系统就是一个公认的,非常强大的人工智能。

关于数据库方面,很多编写人工智能的程序小组不会选择就地重新搭建数据库,而是直接去寻求云数据库。利用云计算技术,为自己的人工智能程序配置好数据库。这样的数据库不仅能够随意的调整其大小,还拥有非常高的可靠性,成本也很低。比如腾讯云,阿里云,清华云都是这类云数据库。当然部分资金和实力非常雄厚的公司还是会采取自己搭建服务器。

而平台方面,国内使用最广泛的平台是百度的人工智能AI平台。我们印象中人工智能都是类似小爱同学之类的人工“智障”,但是百度的人工智能确实非常强大。百度开发的人工智能往往面向的是工厂,和大型的流水线生产。而并非是正常的家用,在整个世界上的排名当中,百度的人工智能技术稳稳的世界前三。

还有就是清华大学最近开发的一个人工智能平台,这个平台据说性能非常强大。而且可以直接利用清华云作为数据库。我最早听说的一个人工智能开发引擎是Tengine。这个引擎提供了很多AI算法,可以进行选择。而且还提供了很多可以设置的功能,根据我朋友的反馈,用起来非常舒服。

我们在学习人工智能以及智能AI技术的时候曾经给大家介绍过不同的机器学习的方法,而今天我们就着重介绍一下,关于机器学习的常用算法都有哪些类型。



支持向量机是什么

支持向量机是一种有监督的机器学习算法,可以用于分类或回归问题。它使用一种称为核技巧的技术来转换数据,然后根据这些转换在可能的输出之间找到一个边界。简单地说,它做一些非常复杂的数据转换,然后根据定义的标签或输出来划分数据。

那么是什么让它如此伟大呢

支持向量机既能进行分类又能进行回归。在本文中,我将重点介绍如何使用SVM进行分类。我将特别关注非线性支持向量机,或者说是使用非线性核的支持向量机。非线性支持向量机意味着算法计算的边界不一定是直线。好处是您可以捕获数据点之间更复杂的关系,而不必自己做困难的转换。缺点是训练时间更长,因为它需要更多的计算。

那么核技巧是什么

核技巧对你获得的数据进行转换。有一些很好的特性,你认为可以用来做一个很好的分类器,然后出来一些你不再认识的数据。这有点像解开一条DNA链。你从这个看起来很难看的数据向量开始,在通过核技巧之后,它会被解开并自我复合,直到它现在是一个更大的数据集,通过查看电子表格无法理解。但是这里有魔力,在扩展数据集时,你的类之间现在有更明显的界限,SVM算法能够计算出更加优化的超平面。

接下来,假设你是一个农民,你有一个问题-你需要设置一个围栏,以保护你的奶牛免受狼的攻击。但是你在哪里建造篱笆好吧,如果你是一个真正的数据驱动农民,你可以做的一件事就是建立一个基于你牧场中奶牛和狼的位置的分类器。昌平北大青鸟建议通过几种不同类型的分类器,我们看到SVM在从狼群中分离你的奶牛方面做得很好。我认为这些图也很好地说明了使用非线性分类器的好处。您可以看到逻辑和决策树模型都只使用直线。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/10507479.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-09
下一篇 2023-05-09

发表评论

登录后才能评论

评论列表(0条)

保存