人类基因工程进展如何了什么时候实现长生不老

人类基因工程进展如何了什么时候实现长生不老,第1张

《北京参考》:与衰老关系密切的因素有哪些

童坦君:环境与遗传因素影响着衰老进程。其中遗传控制起着关键作用。衰老并非单一基因决定,而是一连串"衰老基因"、"长寿基因"激活和阻滞以及通过各自产物相互作用的结果。DNA(特别是线粒体DNA)并不像原先设想的那么稳定,包括基因在内的遗传控制体系可受内外环境,特别是氧自由基等损伤因素的影响,会加速衰老过程。在环境还没尽善尽美的条件下,环境是影响衰老的重要因素。譬如我国解放前平均寿命只有35岁,而现在北京市民平均寿命约76岁。还有我国的长寿地方如新疆的和田、江苏的南通、广西的巴马,说明了环境很重要。老百姓延缓衰老能做到的也只有尽量改善环境。但是,同一个长寿村,为什么不是每个人都长寿呢同时说明遗传起着关键作用。在普通地域,常常有长寿家族,说明长寿基因可以通过遗传来表达。

世界卫生组织将60岁定为老年期的开始。人的衰老犹如春夏秋冬、花开花谢一样,是自然界的美丽现象,人虽然做不到永生,但是我们能追求健康长寿。探讨长寿的奥秘,是医学界的艰巨使命。如果做到80岁、90岁甚至100岁以前不显老,或者做到无病无痛而衰老呢?为此,笔者特意走访了我国初步解开衰老之谜的中国科学院院士、北京大学衰老研究中心主任、北京大学医学部童坦君教授。

人的自然寿命约120岁

《北京参考》人的寿命究竟有多长?

童坦君:法国著名的生物学家巴丰(Buffon)指出:哺乳动物的寿命约为生长期的5-7倍,通常称之为巴丰寿命系数。人的生长期约为20-25年,一次预计人的自然寿命为100-175年。海佛里克证明人类从胚胎到成人、死亡,其纤维母细胞可进行50次左右的有丝分裂,每次细胞周期约为24年,推算人类的自然寿命,应为120岁左右。虽然不同学者解答的方式各不相同,但是结论基本一致,目前一般认为人的自然寿命为120岁左右。

《北京参考》:100年以后人的寿命还是120岁吗?

童坦君:平均寿命受环境影响很大,但是各种动物的最高寿限都相当稳定。鼠类最高寿限约为3年,猴约为28年,犬约为34年、大象约为62年,而人类约为120岁。100年以后,老鼠的最高寿命还是3年。但是100年以后人的平均寿命势必会提高。譬如我国解放前后,平均寿命就提高了一大截。要提高人类最高寿命困难重重,需要进行基因改造,虽然目前科学家在果蝇、蠕虫中试验成功,对其进行某些基因导入或使一些基因突变(改造)则可达到延长其最高寿命的作用。

《北京参考》:作为个体,人的寿命能否预测?

童坦君:预测寿命有多长?是很多人都希望知道的。为迎合这种心理,国内外一些非正式医学书刊登了寿命预测法。预测的主要依据,是将影响健康的一些列因素罗列起来,对健康有利的,根据性质或程度,分别加寿一至数年,对健康不利因素,根据危害性质或程度,分别减寿一至若干年。最后,将全部数据加起来得到总和,再与固定寿命指数或寿命基数相加减便可得出预测到的寿命年龄。但是在现实生活中,基因在人体不同的发育阶段是怎样控制衰老演变的?不前还不清楚。因此,目前世界上还没有公认能正确预测人类寿命的方法。

肺最容易衰老

《北京参考》:人什么时候开始衰老?人体器官有衰老次序吗?

童坦君:衰老分生理成分分生理衰老与病理衰老。同一物种不同个体,即使同一个体不同的组织或器官其衰老速度也不相同。从出生到16岁前各组织器官功能增长快,从16--20岁左右开始到平稳期直到30---35岁,从35岁开始有的器官和组织功能开始减退,其衰老速度随增龄而增加。如果以30岁人的各组织器官功能为100的话,则每增一岁其功能下降为:(休息状态下)神经传导速度以 o.4%下降,心输出量以0.8%下降,肾过滤速率以1.0%下降,最大呼吸能力以1.1%下降。可以理解为肺最容易衰老。其次为肾脏的肾小球,再是心脏,而神经、脑组织衰老速度相对慢一些。各组织器官功能随增龄呈线形进行性下降,因此老年人容易患病,这是一般规律。但在现实生活中有的人衰老速度衰老的生物学指标

《北京参考》:那么,什么情况提示人衰老了

童坦君:制约哺乳动物衰老研究的一个重要因素就是缺少可靠、易测的评估生物学年龄的标志。我们在细胞水平、分子水平发现了一些指标,可作为衰老生物学标志,但是还只是在实验室阶段,离应用到生活中去还有很长的一段路要走。以下5个指标都和衰老有关,但单独使用都有欠缺与不足的地方:

一、成纤维细胞的体外增殖能力。根据细胞的衰老假说,成纤维细胞体外增殖能力是可靠的估算供者衰老程度的指标。

二、DNA损伤修复能力。多种 DNA损伤,如:染色体移位、DNA单双链断裂、片段缺失都随年龄积累。这一现象除与衰老过程中自由基生成率升高及抗氧化剂水平降低有关外,与DNA修复能力降低密切相关。作为估算DNA修复能力的指标包括非程序DNA合成、DNA聚合酶B及内切脱氧核糖核酸酶UV2DNase和AP2DNase。另外,检测各种DNA损伤的方法亦可用于检测该种DNA损伤的修复能力。

三、线粒体DNA片段缺失。线粒体 DNA片段缺失的检测可以毛发为材料,应用甚为便利,是一项很好的衰老生物学标志。

四、DNA甲基化水平。DNA甲基化是真核生物基因表达渐成性调节的重要机制,通过改变染色体的结构,影响DNA与蛋白质的相互作用,抑制基因表达。

五、端粒的长度。对人体不同的组织进行端粒长度检测,发现端粒长度与细胞的寿限相关,精子、胚胎的端粒最长,而小肠粘膜细胞的端粒最短。 Zglinicki等报道,氧化压力造成的单链断裂是端粒缩短的主要原因,过氧化氢诱导细胞出现衰老表型的同时,也加快端粒的缩短。因此,端粒长度不单是细胞分裂次数的"计数器",而是一项细胞衰老的标志。

改善环境改变衰老

《北京参考》:与衰老关系密切的因素有哪些

童坦君:环境与遗传因素影响着衰老进程。其中遗传控制起着关键作用。衰老并非单一基因决定,而是一连串"衰老基因"、"长寿基因"激活和阻滞以及通过各自产物相互作用的结果。DNA(特别是线粒体DNA)并不像原先设想的那么稳定,包括基因在内的遗传控制体系可受内外环境,特别是氧自由基等损伤因素的影响,会加速衰老过程。在环境还没尽善尽美的条件下,环境是影响衰老的重要因素。譬如我国解放前平均寿命只有35岁,而现在北京市民平均寿命约76岁。还有我国的长寿地方如新疆的和田、江苏的南通、广西的巴马,说明了环境很重要。老百姓延缓衰老能做到的也只有尽量改善环境。但是,同一个长寿村,为什么不是每个人都长寿呢同时说明遗传起着关键作用。在普通地域,常常有长寿家族,说明长寿基因可以通过遗传来表达。

端区长度随增龄缩短 女性比男性长寿

《北京参考》:人的衰老有性别差异吗

童坦君:流行病学调查表明,人类女性比男性长寿。从分子水平如何解释女性寿命比男性长这一普遍的生命现象呢这得从衰老机理说起,比较公认的如氧自由基学说,还有现代的DNA损伤修复学说、线粒体损伤学说以及端区假说等。下面将目前国际上衰老研究的热点结合我们自身的研究工作介绍如下,人类除干细胞外,大多数体细胞端区长度随年龄增加而缩短,而体外培养的细胞端区长度随传代而缩短;端区缩短到一定程度,细胞不再分裂,即不能传代,最终衰老直至死亡。端区是指染色体末端的特殊结构,此结构可防止两条染色体末端的DNA链(又名脱氧核糖核酸,它是蕴含遗传信息的遗传物质)因互相交联而造成染色体的畸变。研究中发现,相同年龄组的成年男性的端区长度长于女性,但随增龄端区长度缩短速率却比女性快,每年差3bp。

《北京参考》:人能够改变衰老吗

童坦君:运动医学专家研究表明,心肺功能、骨质疏松情况、肌肉力量、身体的耐久力、胆固醇水平、血压等,通过长年锻炼或参加体力劳动、保健是可以改善的。难以改善的指标,只有头发的变白与皮肤d性减退及萎缩变薄两项。从分子水平讲,我们在细胞衰老相关基因及信号传递通路的先后研究中发现抑癌基因p16通过调节1Kb蛋白活性,不通过端粒酶,就可影响端粒长度、

DNA修复能力与细胞寿命,初步阐明 p16是人类细胞衰老遗传控制程序中的主要环节。这是我国在人类细胞衰老机理研究上取得的突破,还发现衰老相关基因p2 1可保护衰老细胞免于凋亡。至于还有哪些基因管着衰老、怎么管着衰老的速度,都是人类将要继续研究的课题。

《北京参考》:老百姓目前如何做到延缓衰老

童坦君:改善内外环境--遵循平衡饮食、适当运动、心理平衡原则。对于好的环境因素,我们充分利用它;对于不好的因素,要了解它、调控它。平平常常普普通通轻轻松松《北京参考》:童老您今年多大年纪您看上去很精神,请介绍一下您的养生之道。

童坦君:我71岁。老年人要平平常常过日子,不要有压力。

我觉得健康老人最重要的是双腿灵、手脚要利落,不要老是坐着不动或躺着。如能胜任长途步行,则反映心脏功能良好。值得一提的是,老年人不要一看电视就好几个小时。对于饮食要普普通通,不要太挑剔,也不忌口,譬如说肥肉,我也吃它一口,但总量不要太多。在心理方面,平时要做高兴的事,以求轻轻松松。譬如爬山时,你可以什么事情都不想。老年人退休后的生活也可以出彩儿,但不要太累;帮着带带孙子,其实是最幸福的事情。

以崇尚科学为荣以愚昧无知为耻

《北京参考》:您当初从事衰老研究工作是怎么想的

童坦君:据统计,一个人一生的医药费用有三分之二花在老年阶段,随着老年人的增多,其医疗费用将成为家庭和社会的沉重负担,因此老年医学越来越重要。对衰老的研究目的就是要提高老年人的生命质量,延长老年人的健康期、缩短带病期而不仅仅是多活几年。衰老研究是一个年轻的学科,过去的研究方向是整体器官研究,现在是在细胞水平方面研究,以后还要做模式动物研究,但是又不能把动物研究的直接结果用在人的身上,因此,衰老研究还要多样化,不仅要在细胞水平做,还要在器官水平、整体水平做,这样衰老机理研究才能跟上国际与时代。老年医学基础研究对老年临床医学有着重要的作用。我国老年医学基础研究还比较薄弱,如掉队就很难赶上,我们应以崇尚科学为荣,以愚昧无知为耻,我国虽然是人口大国,但是衰老研究工作并不矛盾,在国际上应该处于先进行列。

美科学家衰老新解 人类寿命是可以改变的

2005年02月07日 09:12 新华网

美国《新闻周刊》1月17日一期刊登一篇题为《岁月的皱纹》的文章,介绍五位科学家对衰老的生物化学过程提出的新解释;他们有一个共同的认识,即人类的寿命并不是固定不变的。文章摘要如下:

虽然死亡与纳税一样不可避免,但是未来人们的衰老过程会变慢,寿命也会明显延长。五位科学家对衰老的生物化学过程提出了新的解释,为益寿延年药物的问世敞开了大门。虽然他们的研究方法不尽相同,但都有一个共同的认识,即人类的寿命并不是固定不变的。增强:目标基因在抗衰老方面更加活跃,几年前,分子遗传学家辛西娅·凯尼恩的学生拿着一盘蚯蚓问过往行人他们认为这些蚯蚓有多大。多数人说,它们只有5天那么大。他们并不知道凯尼恩已经修补了这些蚯蚓的基因。这些蠕动的生物的健康状况完全像刚出生5天的样子,但实际上它们已经出生144天了 — 这是它们正常寿命的6倍。

十年来,凯尼恩坚持不懈的研究已经表明:通过改变激素水平增强约100种基因的功能,“就可以轻而易举地使寿命大为改变”,至少蚯蚓是这样。这些基因有的能够产生抗氧化剂;有的能够制造天然的杀菌剂;有的则参与将脂肪运送到整个身体;还有一些被称作是监护人,据凯尼恩说,它们“能够使细胞成分保持良好的工作状态”。一般来说,这些基因越活跃生物的寿命就可能越长。

1993年,凯尼恩关于蚯蚓基因的研究成果首次发表,持怀疑态度者预言这项成果在人类身上行不通。科学家们仍不了解人类和蚯蚓寿命长短如此悬殊的确切原因,更不知道改变蚯蚓寿命长短对人类来说可能意味着什么。不过,蚯蚓的细胞构成很大程度上与高等哺乳动物十分相似。这项发现为生产保健营养品的长生公司打开了大门,该公司正在尝试开发一种药物,这种药物能够产生与凯尼恩的基因修改相同的效果。凯尼恩说:“我并不是说改变一些基因,人类就能够长生不死,但是这可以使80岁的老人看上去像40岁的样子。”对此,谁会反对呢?

压力:长期紧张使细胞衰老得更快

如果你抱怨压力使你又增添了新的皱纹或白发,很有可能你是对的。

《国家科学院学报》去年秋季发表的一项研究报告为你的这种看法提供了科学依据。参与这项研究的加州大学精神病学助理教授埃莉莎·埃佩尔和她的同事们发现,长期处于紧张状态,或仅仅是感到了紧张,就能明显缩短端粒的长度。端粒就是细胞内染色体端位上的着丝点,可用来衡量细胞衰老过程。端粒越短,细胞的寿命就越短,人体衰老的速度就越快。

埃佩尔对39名年纪在20岁—50岁之间的女性进行了研究,她们的孩子有的患严重的慢性病,比如大脑性麻痹。埃佩尔将她们与同一年龄组但孩子都很健康的另外19名母亲进行了比较。母亲照顾患病小孩的时间越长,她的端粒就越短,而且她所面临的氧化压力(释放损害DNA的自由基的过程)就越大。与感觉压力最小的妇女相比,两组女性中自称压力最大的人,其端粒与年长她们10岁的人相当。

虽然埃佩尔承认要想证实她的发现还需要进行更多的研究,但是她认为这个结果可能有积极意义。她说:“既然我们认为我们能够看到压力会造成细胞内的损伤,人们可能会更加重视精神健康。”她补充说,DNA受损可逆转是“绝对”有希望的,“改变生活方式,学会化解压力,就有可能改进你的生活质量、情绪和延长寿命”。

限制:严格控制卡路里摄取可能减缓衰老速度

1986年,当伦纳德·瓜伦特第一个提出通过限制卡路里的摄取来研究生物学的衰老时,这个主意听上去荒唐可笑。然而在过去十年中,研究人员主要了解为什么突然降低卡路里的摄取能激发一种名为SIR2的基因的活性并能延长简单生物体的寿命,而且取得了很大进展。

瓜伦特和一位名叫戴维·辛克莱的哈佛大学研究者都是这方面的顶尖专家,他们主要研究名为“sirtuins”的抗衰老酶,这是SIR2或哺乳动物身上的与SIR2类似的SIRT1所产生的蛋白家族。瓜伦特的实验已经搞清楚了SIR2背后的很多基本分子过程。例如一种名为NADH的天然化学物质可以抑制“sirtuins”发挥作用;他们已经确认NADH含量较低的酵母存活的时间更长。辛克莱发现白藜芦醇与限制卡路里摄取有关联。研究表明,酵母在大剂量白藜芦醇的作用下能延长寿命70%。

因为很少有人愿意大幅度限制卡路里的摄取,瓜伦特就开始寻找一种有相同功效的药剂。长生公司也开始利用瓜伦特的研究成果,这意味着有朝一日不用再提节食这个字眼,人类或许照样能从限制卡路里摄取中获得好处。

补给:两种化学物质使老鼠变年轻

据《国家科学院学报》2002年发表的研究报告说,加州奥克兰研究所儿童医学专家布鲁斯·埃姆斯和他的同事把两种在体细胞中发现的化学物质 — 乙酰基L肉碱和α硫辛酸 — 给老鼠吃。这不仅使老鼠在解决问题和记忆测试中表现更佳,而且行动起来也更加轻松和充满活力。

研究人员确认,不同化学物质混合起来能够改善线粒体和细胞器的功能,而细胞器是细胞主要的能量来源。埃姆斯在一项研究中发现,当加入过氧化铁或过氧化氢的时候,硫辛酸能保护细胞不被氧化。

衰老:透过现象看本质

一、前言

当前,生命科学有关衰老机制的研究,正处于百花齐放、硕果累累的时期(Comfort, 1979; Medvedev, 1990; Hayflick, 1998; Kirkwood, 1999; Warner, 2005; Yin & Chen, 2005),然而,由于衰老过程极其复杂,影响因素千变万化,又由于各个领域研究工作者的知识局限和专业偏见,我们实际面临的是一个鱼龙混杂,莫衷一是的混乱局面(Medvedev, 1990; Olshansky et al 2002; de Grey et al, 2002; de Magalhaes, 2005)。

在这篇论文中,我们将首先简明地回顾有关衰老机理研究的重要进展,探讨在衰老过程中,遗传基因调控与不可避免的环境因子损伤的相互作用。接着,我们强调指出,为了研究真正意义上的衰老过程,应该将注意力集中在健康状态下的种种生理性老化改变,而不是病理性变化。例如,生物体内蛋白质的增龄性损变是一个最为普遍存在的老化现象。在详细阐述自由基氧化和非酶糖基化生化过程,以及熵增性老年色素形成生化机理后,重点探讨了羰基毒化(应激)在衰老过程中的特殊重要意义(Yin & Brunk,1995)。最后,透过现象看本质,提出生化副反应损变失修性累积是生理性衰老过程的生化本质。

二、衰老理论概述和对衰老机理研究的总体评论

大量的生命现象和实验事实提示,尽管少数低等动物的死亡显示出有一些神秘的“生命开关”在起作用,但衰老过程,尤其是高等动物在成年后的衰老过程已被清楚地认识到是一个受环境因素影响的缓慢渐进的损伤和防御相拮抗的过程。大量现行的重要的衰老研究成果都无可争辩地显示了这一点(Comfort, 1979; Medvedev, 1990; Hayflick, 1998; Yin, 2002)。为了便于分析和讨论,我们首先列出数十种迄今最为重要的衰老学说:

整体水平的衰老学说主要有:磨损衰老学说(Sacher 1966)、差误成灾衰老学说(Orgel 1963)、代谢速率衰老学说、自体中毒衰老学说(Metchnikoff 1904)、自然演进衰老学说(程控学说)、剩余信息学说(程控学说)、交联衰老学说;

器官水平的衰老学说有:大脑衰退学说、缺血损伤衰老学说、内分泌减低衰老学说(Korencheysky, 1961)、免疫下降衰老学说(Walford 1969);

细胞水平的衰老学说有:细胞膜衰老学说(Zs-Nagy, 1978)、体细胞突变衰老学说(Szilard, 1959)、线粒体损伤衰老学说(Miquel et al, 1980)、溶酶体(脂褐素)衰老学说(Brunk et al, 2002)、细胞分裂极限学说(程控学说);

分子水平的衰老学说有:端粒缩短学说(程控学说)、基因修饰衰老学说、DNA修复缺陷衰老学说(Vilenchik, 1970)、自由基衰老学说(Harman, 1956, 2003)、氧化衰老学说(Sohal & Allen, 1990; Yu & Yang, 1996)、非酶糖基化衰老学说(Cerami, 1985)、羰基毒化衰老学说(Yin & Brunk, 1995)和微量元素衰老学说(Eichhorn, 1979)等等。

其它重要的衰老学说还有熵增衰老学说(Sacher 1967, Bortz, 1986)、数理衰老学说和各种各样的综合衰老学说(Sohal, 1990; Zs-Nagy, 1991; Kowald & Kirkwood, 1994)。从上述26种主要的衰老学说可以初略的看出绝大多数衰老学说(22种)认为,衰老是因生命过程中多种多样的外加损伤造成的后果。简言之,是一个被动的损伤积累的过程。

应该说明的是在4种归类为“程控学说”的衰老理论中,细胞分裂极限学说和端粒缩短学说所观察研究的所谓“细胞衰老”与动物整体的衰老有着很大的差别。就“细胞不分裂”这个概念本身而言,并不是“细胞衰老”的同义词。解释很简单,终末分化的神经细胞和绝大多数肌肉细胞在生命的早期(胎儿或婴儿)时期完成了分化以后,便不再分裂,却仍然健康的在动物体内延用终身(Sohal, 1981; Porta, 1990)。近来Lanza等甚至用体外培养接近倍增极限的胎牛二倍体成纤维细胞作为供核细胞成功地培育出了6只克隆牛(Lanza et al, 2000),所述的6只克隆牛的端粒比同龄有性生殖牛还长。其实,从衰老过程的常识(或定义:衰老是生物体各种功能的普遍衰弱以及抵抗环境伤害和恢复体内平衡能力逐渐降低的过程)的角度来讲:端粒缩短与细胞和整体动物的增龄性功能下降基本无关。因篇幅所限,本文不作详谈(Wakayama et al 2000; Cristofalo et al, 2004)。

生命科学对于遗传因子与环境损伤各自如何影响衰老进程的认识经历了漫长的“各自为证”的阶段。经过遗传生命科学家几十年的辛勤探索,现已实验确定的与衰老和长寿有关的基因已达几十种(Finch & Tanzi 1997; Warner, 2005;),例如:age-1, Chico, clk-1, daf-2, daf-16, daf-23, eat-2, gro-1, hsf-1, hsp-16, hsp-70, Igflr+/-, indy, inR, isp-1, KLOTHO, lag-1, lac-1, MsrA, mth, αMUPA, old-1, p66sh, Pcmt, Pit-1, Prop-1, ras2p, spe-26, sag, sir2, SIRT1, sod1 基因等等(Hamet & Tremblay, 2003; Warner, 2005)。这些寿命相关基因可被大致分为四类:1)抗应激类基因(如,抗热休克,抗氧应激类);2)能量代谢相关基因(如,胰岛素/胰岛素因子信号途径,限食或线粒体相关基因);3)抗损伤和突变类基因(如,蛋白质和遗传因子的修复更新等);4)稳定神经内分泌与哺乳动物精子产生的相关基因等。好些“寿命基因”的生物学功能目前还不是很清楚。

另外,研究发现的与细胞分裂和衰老相关的细胞周期调控因子有CDK1、PI3K、MAPK、IGF-1和 P16等等(Wang et al, 2001; de Magalhaes, 2005)。因此,生命科学家已经清醒地认识到确有与衰老和长寿相关的基因,但掌管寿命长短的遗传因子不是一个或几个,也不是一组或几组,而是数以百计的遗传因子共同作用的结果(Holliday, 2000; Warner, 2005)。衰老过程是与生理病理相关的,在调控、防御、修复、代谢诸多系统中的多个基因网络共同协调,抵御种种环境损伤的总结果。总之,衰老是先天(遗传)因素和后天(环境)因素共同作用的结果,已逐渐成为衰老生物学研究领域公认的科学事实。

认清了动物衰老的上述特征,关于衰老机制的研究便可理性地聚焦在(分子层面上的)损伤积累和防御修复的范围之内。

三、衰老的生理性特征和潜藏的分子杀手

为了讨论真正意义上的衰老机制,有必要对衰老和老年疾病作较为明晰的界定。一般来讲,学术界普遍认同:衰老不是一种疾病。衰老机制主要研究的是生物体健康状态下的生理性老化改变。

考虑到衰老过程是一个普遍存在的、渐进性的、累积性的和不可逆的生理过程,因此造成生理性衰老的原因应该是有共性的损伤因素(Strehler, 1977)。这些因素造成的积累性的,不可逆的改变才是代表着实际意义的衰老改变。

其实无论是整体水平、器官水平还是细胞水平的衰老改变归根结底还是分子水平的改变,是分子水平的改变分别在不同层次上的不同的表现形式而已。许多非疾病性衰老改变,例如增龄性血管硬化造成的血压增高,又例如胶原交联造成的肺纤维d性降低和肺活量下降,还有皮肤松弛,视力退化,关节僵硬等等都隐含着生物大分子的内在改变(Bailey, 2001)。这些改变从整体和组织器官的角度来讲不算生病,但分子结构已经“病变”了。例如,蛋白质的交联硬化就是一个最为常见的不断绞杀生命活力的生化“枷锁”,即使是无疾而终的老人,体内蛋白质的基本结构与年轻人的相比也早已面目全非了。生物体内蛋白质的增龄性损变和修饰是一个普遍存在的老化现象。衰老的身体,从里到外、从上到下都可观察到增龄性的蛋白质损变。

当然,许多学者会毫不犹豫地赞同,基因受损应该是导致衰老的重要原因之一。然而,‘衰老过程为体细胞突变积累’的假说却遭到了严谨的科学实验无情地反驳,例如,辐射损伤造成遗传因子突变在单倍体和二倍体黄蜂(wasp)身上应该造成明显的寿差,但研究结果表明,DNA结构遭受加倍辐射损伤的二倍体黄蜂的寿命与单倍体黄蜂相比没有出现显著性的寿命差别,否定了上述推测 (Clark & Rubin, 1961; Lamb, 1965)。另外,大量的生物医学研究表明,衰老过程中DNA损伤和突变的增加主要导致病理性改变(Bohr, 2002; Warner, 2005),比如,造成各种各样的线粒体DNA的疾病(Holliday, 2000; Wallace, 2003)以及癌变的产生等。考虑到衰老过程明显的生理特征,蛋白质的增龄性损伤和改变则显然比遗传物质的损伤、变构对“真正衰老”做出了更多“实际的贡献”(Kirkwood,1999; Ryazanov & Nefsky,2002; Yin & Chen, 2005)。

另外,Orgel (1963) 提出的“差误成灾衰老学说”认为:衰老是生物体对‘蛋白质合成的正确维护的逐渐退化’也遇到了科学实验的强烈挑战而基本被否定(Gallant & Palmer 1979; Harley CB et al, 1980)。Harley等人(1980)的研究表明:‘体外培养的人体成纤维细胞在衰老过程中蛋白质的合成错误没有增加’(注意,对于蛋白质来说,氧化应激几乎为无孔不入和无时不在的生命杀手)。进而,该领域的科学家们越来越清楚地认识到,蛋白质的表达后损变才是生命活动和衰老的最主要的表现。因为与衰老相关的蛋白质变构在衰老身体的各个部位比比皆是(如身体各器官组织的增龄性纤维化和被种种疾病所加速的纤维化),而且组织内蛋白质的衰老损变是最终的也是最普遍的衰老现象。事实上,老化蛋白质损伤几乎在每个衰老假说中都有所涉及。因此,本论文的分析和讨论的重点将聚焦在蛋白质的损伤和修复与衰老的相关性等范畴。

总的来说,蛋白质的合成、损变与更新贯穿于整个生命过程中。在生命成熟以后,蛋白质的合成与降解(速度)处于动态平衡中。随着年龄增长,这个平衡逐渐出现倾斜(Bailey, 2001; Terman, 2001)。衰老的生物体细胞内无论是结构蛋白还是功能性蛋白质的损伤和改变的报道比比皆是(Stadtman, 1992, 2003; Rattan, 1996; Ryazanov & Nef

长生不老是相对的可以实现的。

历史上的确有长生不死之人,但是他们已经超越了世俗境界,成为传说中的佛。

长生不老科学参考;

美国科家称20年后人类可长生不老, 原文如下:

>

人类生活在地球上已经几百多年了,从古代到近代,从近代到现代,经历了一代又一代的人类。以前的封建社会打造成了现在人人都平等的社会,还有如今的高楼大夏、科技产品等等,无一不彰显着人类智慧的强大。那么,既然人类可以这么厉害创造这么多东西出来,为什么不能创造长生不老的药出来呢?难道长生不老真的不能实现吗?

首先我们要知道,地球上所有具有生命的生物都离不开生老病死这个法则,没有人会长生不老,有些生物只是能活很久而已,它们最终都会走向死亡。就比如乌龟,曾经有一只名为Adwaita的亚拉伯拉象龟活到250岁,但最后还是逃脱不掉死亡的结局。

可是,有些人往往就是不认同这个法则,他会想尽一切办法去推翻这个法则,最具代表性的就是大名鼎鼎的秦始皇。相信大家对秦始皇都不陌生吧?这可是古代统一六国、修筑长城的大人物啊!可他做的另外一件事情更加深了人们对他的认识,那就是命人为他寻找长生不老药。

原来,在自己辛辛苦苦打下江山,统一六国之后,秦始皇觉得心有不甘,不想把自己的江山拱手让人,只想自己长久的统治这片江山。于是,他便运用了全国的力量,命令了很多人去为他寻找产生不老药,他真的找到了吗?并没有,俗话说:“天命难违”,改变自然法则的事情怎么可能会成功呢?所以秦始皇到死的那一刻都没有找到他梦寐以求的长生不老药。

你以为只有秦始皇一个人尝试着寻找长生不老药吗?那你就大错特错了,还有一位非常大胆的人也在追求着长生不老药,他就是古代唐朝的唐太宗李世明。李世明也是追求长生不老药队伍中的其中一位,他在晚年期间开始害怕死亡,不想将自己辛辛苦苦打拼下来的江山留给后人,所以便集中全国各地的药师为他炼制长生不老药,不过最终还是以失败告终。

你看,这两位帝王想要长生不老的方法都是通过药物来实现的,但是实验证明这个方法不可靠,也不现实。如今,我们的科学家对长生不老也颇有研究,专业一点来说就是对人体的生命进行了一番研究,目的就是为了找到生命诞生的原因以及生命衰老的原因,找到这些原因,就对我们的寿命就有了进一步的认识。

因此,科学家开始通过各种科学仪器来研究人体细胞的微观世界。随后,他们发现了人体的细胞几乎都会生老病死,并且那些老死的细胞还会被我们体内的酶分解,最后通过新陈代谢排出体内。这时又有一个问题出现了,为什么细胞会死亡呢?

科学家经过进一步的调查,发现细胞在更新的时候DNA中的端粒发生了一些变化。先来解释一下,端粒对人类的器官和寿命是十分重要的,一旦端粒消失,人体的器官就会跟着变老,甚至死亡。所以端粒一开始是很长的,后来在细胞的每次更新交替中都会不断缩短,这时端粒酶的活性就会慢慢减低。因此,人类和动物都会慢慢的老去,直到死亡。

若想长生不老,或许就要先解决端粒的问题,也或许解决了端粒的问题也不一定能够长生不老。毕竟这生老病死自古就是不变的道理,也是唯一的自然法则

中国传统婚礼是华夏文化的重要部分。古时于黄昏举行,取其阴阳交替有渐之义,故称。古代婚礼有六:纳采、问名、纳吉、纳徵、请期、亲迎。

在《礼记·昏义》篇对中国古代的昏礼的形式及意义有着较为详细的描述:“昏礼者,将合二姓之好,上以事宗庙而下以继后世也,故君子重之。是以昏礼纳采,问名,纳吉,纳征,请期,皆主人筵几于庙,而拜迎于门外。入,揖让而升,听命于庙,所以敬慎重正昏礼也。

婚礼是汉传统文化精粹之一,大红花轿、浩浩荡荡的迎亲仪仗队、拜天地、掀盖头,身穿"凤冠霞帔、状元服"的中式婚礼,"追寻文化根源、重视传统民俗"成了现代人的新“时尚”,这就是中式婚礼

扩展资料:

婚嫁习俗

相亲相爱交杯酒

1、喝交杯习俗:酒新郎,新娘在婚礼上喝“交杯酒” 是婚礼上重要的仪式之一。习俗起源于秦代,据史料记载,新郎,新娘各执半瓢饮酒,属意两人合二为一、相亲相爱、百事和谐。到了唐代才将容器换成酒杯,属意还是一致,象征着永结同好,同甘共苦的深意。

2、切婚礼蛋糕习俗:新娘和新郎要隔着糕饼接吻。将各种糕点混在一起,在加盖一层雪白的糖霜,就成了现代的婚礼蛋糕。新郎和新娘必须一起切下第一块蛋糕,不能一个人切;面包屑幸运,单身需把蛋糕的屑带回家,放在枕头底下预示吉祥

3、抛洒彩色纸屑习俗:抛洒彩色纸屑风俗起源于意大利,凡参加婚礼的人,要向新人撒一把五彩缤纷而细小的糖果,祝福新人过着甜蜜的生活。而后,改为撒彩色纸屑。

4、送菜和抬嫁妆 新娘过门前一、二天,男家要请宗亲将红单规定的聘礼和鱼、肉、禽、面条等物,由十多人送到女家,回来时就把妆奁、家俱等带回男家。

参考资料:

百度百科婚嫁

人类科技的发展速度日新月异,科技的快速发展给人们的生活带来了便捷,提高了人们生活的质量,而且科学的发展也让过去的很多疾病不断被攻克,人类的寿命也在不断增加。相信大部分人都希望自己能够活得更久一点,甚至少数人带期望着能够获得永生。

长生不老一直是人类的一个梦想,在我们的潜意识里,生死是一个不可改变的轮回,从你出生的那一刻起,未来必然要面临死亡,历史上有一些帝王想要跟命运抗争,想要获得长生不老,获得永生,但最后都失败了。

到了近代,科技快速发展,医学也在快速发展,科学家也一直在研究人类寿命的问题,人的寿命到底是由什么来决定的?宏观上,人类之所以会衰老,会死亡那是因为体内器官的逐渐衰竭,功能越来越差,最后器官停上去选,人的生命也走到了尽头。

从微观的角度看,人类之所以会衰老死亡,那是因为细胞逐渐失去了自我修复的功能,功能减退,如果通过科技手段,可以让细胞每天进行自我修复和清理,那是不是人类就可以永远保持年经健康,从而长生不老,获得永生呢?理论上是完成有可能的。

那么如何做到让细胞每天都进行自我修复?科学家想到了纳米机器人,对于纳米机器人相信很多朋友都听过,它最早是在1959年由诺贝尔奖得主理论物理学家理查德-费曼提出的,我们知道纳米是量级非常小的长度单位,一纳米只相当于十亿分之一米。而纳米机器人正是以纳米为单位计量的超微小机器人或者机器,可以被用于完成分子移动这样的纳米级机械任务,具有一定的精确性和机动性。

纳米机器人非常小,它是微观世界的机器人,可以像细胞一样存在,它的应用领域也非常广,可以应用医疗,太空,计算机等领域,我们今天主要说下它在医学领域的重要应用,前面我们说了,人类之所以会生病,会衰老,会死亡等其实都是细胞方面出了问题,

像一些癌症都是细胞的病变,这些癌细胞是人类的敌人,它们威胁着人类的健康和生命,可是现在治疗癌症的手段都是化疗和做手术,但效果都不太好,并不能完全彻底消灭癌细胞,甚至不少的癌症现在还是无法治疗的,而且手术也不是100%安全的。

如果有了纳米机器人,这些就可以轻松解决,纳米机器人就是计算机的杀毒程序,它深入血液中,自带武器,慢慢将识别的癌细胞一个一个清除,癌细胞被清除干净,癌症自然也就好了,不用化疗和动手术,而且没有任何的副作用。

其它的一些病症,像血栓也是细胞将血管给堵塞了,纳米机器人同样可以去清理堵塞的细胞,让血液流畅通行。而且纳米机器人还可以进行器官的手术,我们现在做手术都是开刀,靠医生精湛的医术来进行,但人的能力必然是有限的,手术的成功率也不会是100%。

如果将手术的任务交给纳米机器人,那成功率就会非常高了,而且不用体外开刀,只需将纳米机器人注入体内,医生可以通过外面的电脑设备精确 *** 控纳米机器人进行手术,这是纳米级别的手术,再复杂的手术都可以完成,而且成功率几乎是100%,医生完全解放了双手。

纳米机器人的医学领域的作用当然不止这些,它最厉害之处就是可以让人类获得永生,人类之所以衰老和死亡,是因为细胞逐渐失去了自我修复的功能,功能减退。在劳碌了一天之后,人类通过睡觉来修复身体,可是生活节奏加快,人类休息时间越来越少,身体修复速度远远比不上我们破坏的速度。但是纳米机器人的出现,会根据人类细胞收存情况,进行及时的修复。即使我们仍然在工作,纳米机器人也会乐此不疲的在人类的身体里,哪里有病修哪里,直到你的身体回复到原来的健康的状态。这样,你永远都不会感觉的累,永远可以保持年轻时候的状态,让自己精力充沛,生活的质量会大大提高。

当细胞永远都可以保持健康活力,那人类也就能获得永生,即使做不到,但活个几万年应该是没有问题的,这个时候可能有人要说了,活这么长时间有意思吗?即使未来人类真的可以通过纳米机器人让人类获得永生,你是否会一直活下去呢?

对于这个问题,不同的人有不同的理解,如果一直有追求,有梦想,为了自己的梦想一直奋斗的人们,他们当然会希望一直活下去,比如一些科学家,科学的研究永无止境,当然不管你活多少年,也会有一直研究的目标。再比如宇宙探索,宇宙广阔无边,有着太多的奥秘等着人类去探索,活得越久,你越会不断去探索宇宙,永无止境。

这是有理想,有目标的人,只要目标永无止境,就会希望一直活下去。但是对于一些只会享乐,没有追求,没有理想的人来说,活得太久,他们反而会觉得没意思,永生对于这些人来说可能是一种折磨,因此未来如果真的实现了永生,一定要做一个有理想,有追求的人,有了无限的目标,你才不会觉得永生是一种负担。

以上就是关于人类基因工程进展如何了什么时候实现长生不老全部的内容,包括:人类基因工程进展如何了什么时候实现长生不老、长生不老如何理解、人类达不到长生不老,是因为哪些标准条件不允许等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/10637471.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-10
下一篇 2023-05-10

发表评论

登录后才能评论

评论列表(0条)

保存