下面给大家介绍一下什么是ETL以及ETL常用的三种工具——Datastage,Informatica,Kettle。
一、什么是ETL?
ETL,Extract-Transform-Load 的缩写,用来描述将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程。
数据仓库结构
通俗的说法就是从数据源抽取数据出来,进行清洗加工转换,然后加载到定义好的数据仓库模型中去。目的是将企业中的分散、零乱、标准不统一的数据整合到一起,为企业的决策提供分析依据。
ETL是BI项目重要的一个环节,其设计的好坏影响生成数据的质量,直接关系到BI项目的成败。
二、为什么要用ETL工具?
在数据处理的时候,我们有时会遇到这些问题:
▶ 当数据来自不同的物理主机,这时候如使用SQL语句去处理的话,就显得比较吃力且开销也更大。
▶ 数据来源可以是各种不同的数据库或者文件,这时候需要先把他们整理成统一的格式后才可以进行数据的处理,这一过程用代码实现显然有些麻烦。
▶ 在数据库中我们当然可以使用存储过程去处理数据,但是处理海量数据的时候存储过程显然比较吃力,而且会占用较多数据库的资源,这可能会导致数据资源不足,进而影响数据库的性能。
而上述遇到的问题,我们用ETL工具就可以解决。ETL工具具有以下几点优势:
1、支持多种异构数据源的连接。(部分)
2、图形化的界面 *** 作十分方便。
3、处理海量数据速度快、流程更清晰等。
三、ETL工具介绍
1、Datastage
IBM公司的商业软件,最专业的ETL工具,但同时价格不菲,适合大规模的ETL应用。
使用难度:★★★★
2、Informatica
商业软件,相当专业的ETL工具。价格上比Datastage便宜一点,也适合大规模的ETL应用。
使用难度:★★
3、Kettle
免费,最著名的开源产品,是用纯java编写的ETL工具,只需要JVM环境即可部署,可跨平台,扩展性好。
使用难度:★★
四、三种ETL工具的对比
Datastage、Informatica、Kettle三个ETL工具的特点和差异介绍:
1、 *** 作
这三种ETL工具都是属于比较简单易用的,主要看开发人员对于工具的熟练程度。
Informatica有四个开发管理组件,开发的时候我们需要打开其中三个进行开发,Informatica没有ctrl+z的功能,如果对job作了改变之后,想要撤销,返回到改变前是不可能的。相比Kettle跟Datastage在测试调试的时候不太方便。Datastage全部的 *** 作在同一个界面中,不用切换界面,能够看到数据的来源,整个job的情况,在找bug的时候会比Informatica方便。
Kettle介于两者之间。
2、部署
Kettle只需要JVM环境,Informatica需要服务器和客户端安装,而Datastage的部署比较耗费时间,有一点难度。
3、数据处理的速度
大数据量下Informatica与Datastage的处理速度是比较快的,比较稳定。Kettle的处理速度相比之下稍慢。
4、服务
Informatica与Datastage有很好的商业化的技术支持,而Kettle则没有。商业软件的售后服务上会比免费的开源软件好很多。
5、风险
风险与成本成反比,也与技术能力成正比。
6、扩展
Kettle的扩展性无疑是最好,因为是开源代码,可以自己开发拓展它的功能,而Informatica和Datastage由于是商业软件,基本上没有。
7、Job的监控
三者都有监控和日志工具。
在数据的监控上,个人觉得Datastage的实时监控做的更加好,可以直观看到数据抽取的情况,运行到哪一个控件上。这对于调优来说,我们可以更快的定位到处理速度太慢的控件并进行处理,而informatica也有相应的功能,但是并不直观,需要通过两个界面的对比才可以定位到处理速度缓慢的控件。有时候还需要通过一些方法去查找。
8、网上的技术文档
Datastage < Informatica < kettle,相对来说,Datastage跟Informatica在遇到问题去网上找到解决方法的概率比较低,kettle则比较多。
五、项目经验分享
在项目中,很多时候我们都需要同步生产库的表到数据仓库中。一百多张表同步、重复的 *** 作,对开发人员来说是细心和耐心的考验。在这种情况下,开发人员最喜欢的工具无疑是kettle,多个表的同步都可以用同一个程序运行,不必每一张表的同步都建一个程序,而informatica虽然有提供工具去批量设计,但还是需要生成多个程序进行一一配置,而datastage在这方面就显得比较笨拙。
在做增量表的时候,每次运行后都需要把将最新的一条数据 *** 作时间存到数据库中,下次运行我们就取大于这个时间的数据。Kettle有控件可以直接读取数据库中的这个时间置为变量;对于没有类似功能控件的informatica,我们的做法是先读取的数据库中的这个时间存到文件,然后主程序运行的时候指定这个文件为参数文件,也可以得到同样的效果
需要一整套的ETL作业流程:数据连接——抽取转换——流程调度——任务监控。你说的自动进行数据更新处理,至少需要前三步。这里有一个简单好用的ETL工具:昊合数据整合平台HaoheDI,你可以体验体验,他们官网上有部署,直接在云服务器上,可以去实际 *** 作体验,你说的这个借助这个工具很好实现。
楼主好,我现在正在做BI相关的东西。如果ETL和SQL来说,肯定是SQL效率高的多。但是双方各有优势,先说ETL,ETL主要面向的是建立数据仓库来使用的。ETL更偏向数据清洗,多数据源数据整合,获取增量,转换加载到数据仓库所使用的工具。比如我有两个数据源,一个是数据库的表,另外一个是excel数据,而我需要合并这两个数据,通常这种东西在SQL语句中比较难实现。但是ETL却有很多现成的组件和驱动,几个组件就搞定了。还有比如跨服务器,并且服务器之间不能建立连接的数据源,比如我们公司系统分为一期和二期,存放的数据库是不同的,数据结构也不相同,数据库之间也不能建立连接,这种情况下,ETL就显得尤为重要和突出。通过固定的抽取,转换,加载到数据仓库中,即可很容易实现。那么SQL呢?SQL事实上只是固定的脚本语言,但是执行效率高,速度快。不过灵活性不高,很难跨服务器整合数据。所以SQL更适合在固定数据库中执行大范围的查询和数据更改,由于脚本语言可以随便编写,所以在固定数据库中能够实现的功能就相当强大,不像ETL中功能只能受组件限制,组件有什么功能,才能实现什么功能。
所以具体我们在什么时候使用ETL和SQL就很明显了,当我们需要多数据源整合建立数据仓库,并进行数据分析的时候,我们使用ETL。如果是固定单一数据库的数据层次处理,我们就使用SQL。当然,ETL也是离不开SQL的。经常 我们在处理小数据集是 不想用大刀,逮住了excel 就想 一直拖拖拉拉就把数据先处理一下,实在处理费力,再从 python numpy pandas 处理一通。
常见的 在处理五要素的时候,姓名基本没啥要处理的,
1身份z号 手机号 yhk号 经常是 显示为 E+17 或者 前面带有 ``` 字符
2申请日期经常是各种格式,有时候一不小心就变成乱码的数字 后者####。
3如果 excel 有外部链接存在,即使忽略,但是 在修改的时候还是非常糟心,要等很久,而且经常无法保存,excel就崩溃了
4还有就是 本身就是文本,但是使用 TEXT LEFT RIGHT MID IF 没有任何效果
5excel 读取 含有中文的数据显示乱码
6多条件的替换问题,if嵌套。
7批量 替换 匹配
8空值问题
9筛选问题
10脚本读取文件
其实就是以上的这些小情况,经常浪费大量时间,急需一招狠制敌
接着说 1
因为很多时候 excel会把一些类数值的身份z号和手机号当做数字,这个其实是数据源在使用python处理的时候没有来得及保存 对应列的 数据类型。
在出现 E+17,我们首先想到的是修改 单元格格式,比如保存为文本,假如正常那简直是万幸,如果不可以,可能会发现 修改后的数据末尾都变成了3个零。
另外一个终极方法
这里,有一个简单的 *** 作方法:选择数据源——右键设置单元格格式——自定义——选择0,按确定——结果出来了。结果很明显,是我们需要的效果,而且快捷,方便。
另外就是使用python pandas读取 ,设置 dtype=npstr
对于 身份z或者手机号 yhk号 数据首位出现 `字符的,可以使用 RIGHT MID 函数做数据的截取
对于数据出现 ###,一般修改单元格格式 ,或者 拉长单元格,或者 python读取一下就可以处理
最后就是说2了。日期
其实这个日期,就是格式太特么的多和复杂不固定。我们现在 使用的是 类似 2018-4-17 这种格式,所以只要不符合这种格式的,我们都会需要做一些转化,
最简单的 就是使用 TEXT 函数 ,一般这样用 =TEXT(E2,"yyyy-mm-dd")
基本就可以转化过来。
如果以上不起作用 参考 处理 4 的方法 不断尝试 ,最后确认函数真的不会起作用为止。
之后如果 不小心 变成一段数字了,修改单元格格式,转回日期一般是有效的。
如果日期 函数不起效果,我们使用截取 拼接的方式 使用 RIGHT LEFT MID
CONCATENATE() 这些函数 一般也可以胜任
如果 还是不行也可以 使用 YEAR() DATE() EXCEL 本身的日期处理函数
另外就是修改单元格格式 ,尝试一下各种日期格式是否可以满足要求
另外的杀手锏就是 python pandas 和numpy都有 时间处理的函数
可以参考
推荐阅读
>目前kettle功能太弱小,还是等30出来再用吧, talend不错,支持的数据种类很多 商用的都有很好的data mapping/transform界面,job分布式服务器和监控工具等等 具体的性能差别我不太清楚很少做对速度要求很高的项目
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)