1、根据企业的需求选择合适的线路
国内常用的线路是电信线路和网通线路,其中河南以及河南以北地区以网通为主,河南以及以南以网通为主,同等线路之间访问速度比较快,反之则访问速度比较慢,而双线线路则解决解决这一问题,所以可以根据企业的需求选择单线路或者双线路。
2、根据需求选择共享带宽或者是独立带宽
顾名思义,共享带宽是指和机房内的其他服务器共同使用一定的带宽,一般是100M独享带宽是指独自使用一定的带宽。如果企业网站属于下载类、、访问量比较高的网站,可以选择独享带宽。如果网站是普通的文字类网站则可以选择共享带宽,在共享情况下一般带宽也可以达到10M或者10M以上。
3、硬件配置方面,选择高性能的硬件配置
至于服务器配置,可以选择较为经济的配置,如酷睿E5700、inter 四核 Q9300等,如果选择比较高端的,如Intel Xeon E5-2609 至强四核、Intel XEON E5620 至强四核八线程等,结合企业的需求进行选择。
4、选择正规的IDC商,省去很多后期麻烦
正规的IDC商一般都有营业执照、ICP证、ISP证等证件,之所以挑选正规的IDC商是因为服务器不是一般的电脑,需要24小时开机,对环境要求也比较高,并且运行过程中出现问题需要及时解决,一旦出现服务器不能正常运行了,不仅影响网站优化,还易降低用户体验,严重时可导致网站被k,需要很长时间才能恢复。而正规的IDC上都是有很高的信誉保障的,机房都有专业技术人员值班。结构层次
(一) 物理层次
从物理层次结构上,PACS可以分为4层:网络用户层、接入层、核
PACS应用层次结构示意图
PACS应用层次结构示意图
心层、资源提供层,自下而上构成一个"金字塔"结构。其中:网络用户层是网络中的众多的终端或工作站;接入层是指与网络用户层中的终端或工作站相连接,为这些终端或工作站进行网络互联的网络设备集合(如二级交换机、集线器等);核心层是指将接入层网络设备汇集起来,形成全网互联的网络设备的集合,如(服务器、路由器、防火墙等);资源提供层是指PACS网络中的众多的医疗器械终端,如(CT、US、DR等)。
(二) 应用层次
从应用层次结构上,PACS可以分为3层:MINI-PACS、科室
PACS应用层次结构示意图
PACS应用层次结构示意图
级PACS、全院级PACS,自内而外构成一个"内嵌型"结构。其中:MINI-PACS是指针对小型医疗院所或单一科室规划的系统,MINI-PACS系统也必须包含超声波、内窥镜等图文并茂的专业影像报告系统;科室级PACS是指针对中型医院所提出的科室架构,紧密整合院方已有的HIS/RIS系统 ,建立以患者为中心的科室影像中心;全院级PACS主要是针对大型医院所提出的全院性架构,完全实现全院影像科室数字化读片诊断工作流程、实现全院影像科室电子化管理。
工作流程
现有主流PACS厂商,在研发PACS系统之初,都遵从了以下标准流程。
PACS业务流程图
PACS业务流程图
(一) 检查信息登记输入
前台登记工作站录入患者基本信息及检查申请信息,也可通过检索HIS系统(如果存在HIS并与PACS/RIS融合)进行病人信息自动录入,并对病人进行分诊登记、复诊登记、申请单扫描、申请单打印、分诊安排等工作。
(二) WorkList服务
病人信息一经录入,其他工作站可直接从PACS系统主数据库中自动调用,无需重新手动录入;具有WorkList服务的医疗影像设备可直接由服务器提取相关病人基本信息列表,不具备WorkList功能影像设备通过医疗影像设备 *** 作台输入病人信息资料或通过分诊台提取登记信息。
(三) 影像获取
对于标准 DICOM 设备,采集工作站可在检查完成后或检查过程中自动 ( 或手动 ) 将影像转发至PACS主服务器。
(四) 非DICOM转换
对于非DICOM设备,采集工作站可使用MiVideo DICOM网关收到登记信息后,在检查过程中进行影像采集,采集的影像自动(或由设备 *** 作技师手动转发)转发至PACS主服务器。
(五) 图像调阅
患者在检查室完成影像检查后,医师可通过阅片室的网络进行影像调阅、浏览及处理,并可进行胶片打印输出后交付患者。
需要调阅影像时PACS系统自动按照后台设定路径从主服务器磁盘阵列或与之连接的前置服务器中调用。
在图像显示界面,医师一般可以进行一些测量长度、角度、面积等图像后处理,在主流PACS中,除了测量功能外,都会提供缩放、移动、镜像、反相、旋转、滤波、锐化、伪彩、播放、窗宽窗位调节等图像后处理功能。
(六) 报告编辑
患者完成影像检查后由专业人员对影像质量进行评审,并进行质量分析。完成质量评审控制后的影像,诊断医生可进行影像诊断报告编辑,并根据诊断医师权限,分别进行初诊报告、报告审核工作。在书写报告过程中,可使用诊断常用词语模版,以减少医生键盘输入工作量。诊断报告审核过程中可对修改内容进行修改痕迹保留、可获得临床诊断、详细病史、历史诊断等信息、可将报告存储为典型病例供其它类似诊断使用,供整个科室内学习提高使用。
审核完成的报告通过打印机进行输出后由医师签字后提交,同时诊断报告上传至主服务器存储备份。打印完成后的报告不能再进行修改,但可以只读方式调阅参考。
6架构数据
存储技术架构
PACS有别于HIS、LIS等其它医学信息系统的最重要一点就是:海量数据存储。合理设计PACS的数据存储结构,是成功建设PACS的关键。一个大型的医院拥有大批现代化的大型医疗影像设备,每天影像检查产生的数据量多达4个GB左右(未压缩的原始数据),一年数据总量多约(1200GB)。而随着医院的业务飞速发展和新的影像设备的引进,这一数据量还可能进一步增长。此外,如何提高在线数据随机存取的效率也是一个非常关键的问题。
基于这一原因,现有的PACS医疗影像信息系统提供商多采用分级存储(HSM)的策略,将PACS存储分成在线存储和离线存储两级结构。用两种不同性能的存储介质来分别完成高容量和高效率的要求,低速超大容量存储设备(离线存储服务器)用作永久存储;高速存储设备(SAN)用作在线数据存储,确保在线数据的极高效存取。对于2年以上的历史数据保存在离线存储设备里,在线存储设备仅保存最近三年的数据。
文件格式
DICOM文件是指按照DICOM标准而存储的医学文件。
DICOM文件由多个数据集组成。数据集表现了现实世界信息对象的相关属性,如病人姓名、性别、身高和体重等。数据集由数据元素组成,数据元素包含进行编 码的信息对象属性的值,并由数据元素标签(Tag)唯一标识。数据元素具有三种结构,其中两种具有类型表示VR(是否出现由传输语法决定),差别在于其长 度的表达方式,另外一种不包括类型表示。类型表示指明了该数据元素中的数据是哪种类型,它是一个长度为2的字符串,例如一个数据元素的VR为FL,表示该数据元素中存储的数据类型为浮点型。所有数据元素都包含标签、值长度和数据值体。
标签是一个16位无符号整数对,按顺序排列包括组号和元素号。数据集中的数据元素应按数据元素标签号的递增顺序组织,且在一个数据集中最多出现一次。
值长度是一个16或32位(取决于显式VR或隐式VR)无符号整数,表明了准确的数据值的长度,按字节数目(为偶数)记录。此长度不包含数据元素标签、VR、值长度字段。
数据值体表明了数据元素的值,其长度为偶数字节,该字段的数据类型是由数据元素的VR所明确定义。数据元素字段由三个公共字段和一个可选字段组成。
数据结构
以现广东市场上的主流SUPER PACS系统为例。
目前SUPER PACS系统数据库共有36个表,按用途分为:公用表、数字胶片室专用表、放射专用表、超声专用表、远程专用表。其中起到关键性作用的是Patient、Study、Series、Image四个主表。
Patient表用于存放病人的基本信息,应用范围涉及到SUPER PACS的所有子系统;Study表用于存放病人的检查信息,应用范围涉及到SUPER PACS的所有子系统;Series表用于图象序列表的生成,应用范围涉及到SUPERPACSR DICOM放射系统;Image表用于保存系统图象记录。主要工作就是机器上下架和装系统,有时候换个硬件,最多配个交换机什么的,每一块都涉及的很浅,入门可以,长做没意义,况且idc运维很多要倒班对身体不好。
无线网络优化未来发展方向探讨
网络优化工作是网络质量的重要保障,是核心运营的组成部分。针对无线网络优化未来发展方向有以下几方面的观点。
1 扎实的基础工作是网络性能的根本保障
定期的网络评估测试、准确的工程参数、快速的投诉处理以及精确的网络规划等是网络优化的基础性工作,做好这些工作才能为网络性能提升提供有力支撑。由于基础工作需要大量的人力物力投入,繁重繁琐,往往造成了基础工作的不到位。随着技术的进步还发展,基于大数据、物联网、新型工具等手段,现在针对基础工作可以有更高效和准确的解决方案。
a) 网络评估测试
基于MR的精确定位技术的发展,利用MR对网络进行覆盖评估的准确性大大提升,同时虚拟路测技术的出现,多厂家MR覆盖评估的引入,为网络评估拓展了更多维度、提供了更高效更准确的方式,基于后台数据的网络质量评估必将成为未来的趋势。
b) 统一天馈系统管理
基站天线方位角、下倾角、横滚角、经纬度、海拔、挂高等工参的获取和调整是网络优化的核心。现在主要依靠人力来完成, *** 作繁琐效率低,数据误差大且容易受特殊场景影响并且施工风险大。随着物联网技术的发展,利用物联网采集天馈的工程参数,实现天馈工程参数的“可管、可调、可视”成为可能。
c) 快速投诉处理
快速的投诉处理是发现网络问题,提升用户感知的必备手段,基于网管数据的分析、便携测试设备的应用,可以有效的实现网络投诉的快速定位和处理解决。
d) 自动网络规划选点
业务的发展对于网络深度覆盖的需求越来越高,对于网络规划的准确性、及时性也提出更高的需求。基于MR的深度覆盖评估以及自动规划选点的技术也应运而生。
在基础网络优化的创新应用以及变革等方面中兴通讯有意愿也有能力配合运营商进行相关的研究及实践。
2 大数据网优平台是网络优化效率提升必由之路
激烈的市场竞争对网络优化提出了效率提升的要求,集中化、智能化、自动化成为网优的发展方向,而要实现这些必须依赖大数据网优平台的应用。
a) 自动网络优化平台
网络规模越来越大,网络结构越来越复杂,单纯依靠优化人员来完成网络优化已经不适应现有网络的需求。汇集了网管、MR/CDT、测试、话单以及工程参数等数据的平台,结合以往优化积累的算法的网优平台将会大大降低网优的复杂度,提升网络优化的效率。
b) 端到端定界定位功能
数据业务的快速的发展,业务种类的多样,导致未问题出现在网络的各个环节,对于端到端的问题定位提出了更高的要求,通过全流程的话单关联,深入相关性分析可能引入问题的网元,并针对话单细节分析找到问题根因,实现端到端的问题定界定位是未来的趋势。
c) 自动派单管理系统
传统的网优问题处理流程是层层传递的,中间环节多,处理时间长。基于大数据的网优平台对网络数据的自动分析、自动派发工单并对处理结果进行自动验证,完成网络问题处理的闭环,可以有效的支持网络优化的集中化和自动化工作。
3 全面的创新应用是网络质量不断提升的重要支撑
针对各个网元、不同场景、不同应用进行全面的工作,在常规的工作外,还需要借助于设备厂家在新设备、新功能、新算法等方面与运营商共同开展创先的工作,来满足一些疑难问题的解决,从而为网络质量的不断提升提供重要支撑。
a) 新设备应用
网络的覆盖、容量保障不是单纯一类设备可以完成的,针对不同场景、不同应用设备厂家针对性的开发了系列的新型设备,将新型设备与网络实际情况进行结合,创新的应用,从而保障网络性能的不断提升。
b) 新功能新算法开发应用
充分挖掘现网的潜力,针对一些疑难问题进行创新的功能开发,一些新型算法的研究,可以有效的解决网络问题,起到事半功倍的效果。
4 全员参与的网优模式变化
现有的网络优化模式主要是由运营商主导,设备及服务厂家参与的模式,在很多方面遇到了物业协调困难、成本高昂、活力不足的困难。随着技术和社会的发展,全社会参与到网络建设和优化中来成为一种可能,通过全民的参与能有效的降低优化成本,解决疑难问题并为网络优化拓展全新的领域。
a) 参与网络建设解决深度覆盖问题
现在网络深度覆盖问题的解决存在物业协调困难、建设成本高、无法直接覆盖最终用户等难题。随着Smallcell的发展,由用户自建覆盖家庭或特定场所成为可能,这样既规避了物业协调的难题,也做到了对最终用户的精准覆盖。
b) 终端主动参与网络测试
智能终端的功能强大,完全满足对网络测试的需要,通过将测试的功能在智能终端上部署,实现终端主动测试,快速的评估网络质量、发现网络问题,对网络优化提供良好的支撑。
c) 引入社会力量进行应用的开发
将网络中数据进行挖掘,实现用户、业务、地理、终端、网络等维度API的调用能力,引入全社会力量参与到应用开发,为数据的挖掘应用,网络优化效率的提升提供帮助。
5 数据挖掘和应用是未来业务拓展重要方向
这是一个大数据的时代,运营商手中海量的数据经过数据挖掘和处理除了对自身的建设维护以及市场拓展提供支撑之外,还可以应用到其他行业,拓展运营商的市场方向。
a) MEC为数据应用
利用在网络边缘计算(MEC)开放网络能力,部署计算和存储设施,有效的助力运营商与第三方企业建立合作,推进垂直行业应用,提升网络价值。
b) 数据挖掘的行业拓展
利用大数据挖掘技术,将客户位置、行为、消费能力,兴趣搜索等OBM域等数据进行关联分析,通过事件驱动覆盖客户的潜在需求。大数据平台布局,一方面是选择服务器,二是选择机房。对于服务器来说,其实同等配置下性能相差不是很大。浪潮、华为、联想、DELL都可以,IBM的价格要略高一些。对于机房来说,要选择稳定性高,安全性高的机房。中关村软件园机房和铜牛机房都是不错的机房,里面有很多大数据、金融等用户,可以考虑。机房监控系统常见故障及处理方法
在一个机房监控系统进入调试阶段、试运行阶段以及交付使用后,都有可能出现这样那样的故障现象,这些故障现象是不能正常运行,或是系统达不到设计要求的技术指标,或是整体性能和质量不理想,下面就一些较为常见的故障,提供给用户、工程商参考。
1由于某些线路,特别是与设备相接的线路处理不好,产生断路、短路、线间绝缘不良、误接线等导致设备(或部件)的损坏、性能下降或设备本身并未因此损坏,但反映出的现象是出在设备或部件身上。特别是某些接插件的质量不良,连线的工艺不好,更是出现问题的常见原因。
解决方法:在这种情况下,应根据故障现象冷静地进行分析,判断在若干条线路上是由于哪些线路的连接有问题才产生那种故障现象。这样就会把出现问题的范围缩小了。比如,一台带三可变镜头的摄像机图像信号是正常的,但镜头无法控制,就不必再检查视频输出线,而只要检查镜头控制线就行了。另外,接插件方面,特别是BNC 型接头,对焊接工艺、视频线的连接安装工艺要求都非常高,如处理不当,即使调试和试运行阶段没有出现问题,但运行一段后就出现问题了。特别值得指出的是,带云台的摄像机由于全方位的运动,时间长了,导致连线的脱落、挣断是常见的。因此,要特别注意这种情况的设备与各种线路的连接应符合长时间运转的要求。
2电源的不正确引发的设备故障
解决方法:电源不正确大致有如下几种可能:供电线路或供电电压不正确、功率不够(或某一路供电线路的线径不够,降压过大等)、供电系统的传输线路出现短路、断路、瞬间过压等。特别是因供电错误或瞬间过压导致设备损坏的情况时有发生。
3设备或部件本身的质量问题。一般来说,经过认真选择的已商品化的设备或部件是不应该出现质量问题的。
解决方法:即使出现问题,也往往发生在系统已交付使用并运行了相当长时间之后。除了上面所说的产品自身质量问题外,最常见的是由于对设备调整不当产生的问题。比如摄像机后截距的调整是个要求非常细致的精确的工作。如不认真调整,就会出现聚焦不好或在三可变镜头的各种 *** 作时发生散焦等问题。另外摄像机上一些开关和调整旋钮的位置是否正确、是否符合系统的技术要求、解码器编码开关或其它可调部位设置的正确与否都会直接影响设备本身的正常使用或影响整个系统的正常性能。
4设备(或部件)与设备(或部件)之间的连接不正确产生的问题
解决方法:
1) 阻抗不匹配,如视频接在一个阻抗为高阻的监视器上,就会出现图像很亮、字符抖动或出现字符时有时无。
2)通信接口或通信方式不对。这种情况往往发生在控制主机与解码器或控制键盘等有通信控制关系的设备之间。这多半是由于选用的控制主机与解码器或控制键盘等不是一个厂家的产品所造成的。一般来说,不同的厂家所采用的通信方式或传输的控制码是不同的。所以,对于主机、解码器、控制键盘等应选用同一厂家的产品。
3)驱动能力不够或超出规定的设备连接数量。比如,控制主机所对应的主控键盘和副控键的数量是有规定的。超过规定数量后将导致系统工作不正常。解码器云台工作电源功率比实际云台低,就驱动不了云台。
5云台的故障。一个云台在使用后不久就运转不灵或根本不能转动,是云台常见的故障
解决方法:这种情况的出现除去产品质量的因素外,主要是以下各种原因造成的;只允许将摄像机正装(即摄像机坐在云台转台的上部)的云台,在使用时采用了吊装的方式(即将摄像机装在云台转台的下方)。在这种情况下,吊装方式导致了云台运转负荷加大,故使用不久就会导致云台的传动机构损坏,甚至烧毁电机。
摄像机及其防护罩等总重量超过云台的承重。特别是室外使用的云台,往往防护罩的重量过大,常会出现云台转不动(特别是垂直方向转不动)的问题。室外云台因环境温度过高、过低、防水、防冻措施不良而出现故障甚至损坏。
6距离过远时, *** 作键盘无法通过解码器对摄像机(包括镜头)和云台进行遥控
解决方法:这主要是因为距离过远时,控制信号衰减太大,解码器接受到的控制信号太弱引起的。这时应该在一定的距离上加装中继盒以放大整形控制信号。
7监视器的图像对比度太小,图像淡
解决方法:这种现象如不是控制主机及监视器本身的问题,就是传输距离过远或视频传输线衰减太大。在这种情况下,应加入线路放大和补偿的装置。
8图像清晰度不高、细节部分丢失、严重时会出现彩色信号丢失或色饱和度过小
解决方法:这是由于图像信号的高频端损失过大,以致3MHz 以上频率的信号基本丢失造成的。这种情况或因传输距离过远,而中间又无放大补偿装置;或因视频传输电缆分布电容过大;或因传输环节中在传输线的芯线与屏蔽线间出现了集中分布的等效电容造成的。
9色调失真
解决方法:这是在远距离的视频基带传输方式下容易出现的故障现象。主要原因是由传输线引起的信号高频段相移过大而造成的。这种情况应加相位补偿器。
10 *** 作键盘失灵
解决方法:这种现象在检查连线无问题时,基本上可确定为 *** 作键盘“死机”造成的。键盘的 *** 作作用说明上,一般都有解决“死机”的方法,例如“整机复位”等方式,可用此方法解决。如无法解决,就可能是键盘本身损坏了。
11通信不良故障
解决方法:表现为受控的云台或电动镜头有时可正常动作,有时则不能(或延时)动作,或是动作之后停不住,这主要原因是通信线路有问题。在确认接线无误、线路无误的情况下,检查解码器上RS-485 通信终端匹配电阻(120 )。或断开主机接口和最远端匹配电阻,用万用表测量单个通信片的端脚直流电阻RD 及整个系统的通信端口的直流电阻R2,并与理论计算进行比较(R2=R0/n,其中n 为整个系统中所并接的解码器的数量),如果差异过大,则可认定是通信芯片有问题,并通过逐点排除法找到有问题的芯片。如果通信线路有很多支路,可以断开各支路来判断通信故障的大概范围。
12主机对图像的切换不干净
解决方法:这种故障现象的表现是在选切后的画面上,叠加有其它画面的干扰,或有其它图像的行同步信号的干扰。这是因为主机的矩阵切换开关质量不良,达不到图像之间隔离度的要求所造成的。如果采用的是射频传输系统,也可能是系统的交扰调制和相互调制过大而造成的。
一个大型的、与防盗报警联动运行的电视监控系统,是一个技术含量高、构成复杂的系统。各种故障现象虽然都有可能出现,但只要把好所选用的设备和器材的质量关,严格按标准和规范施工,一般是不会出现大问题的。即使出现问题,只要冷静分析和思考,“对症下药”,不盲目地大拆大卸,是会较快解决问题的。以上内容由深圳计通提供。看具体什么假设了,放在一个机房做集群,内网吞吐量也大,服务器之间数据传输延迟小,提高这一个点的计算能力,自动化管理也方便。
如果是分布放在不同的机房,就类似CDN,不同节点的服务器服务不同区域的客户,这样使访问速度更快,但不同节点之间的数据同步和管理相对要求高一些。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)