比如你要进行深度学习计算,建议使用腾讯云GN8/GN10X 实例。GN10Xp配备Tesla V100 NVLink 32GB GPU,具有强大的单精度浮点运算能力,并具备较大的 GPU 板载内存。最大实例规格配置8个 V100 ,80个 vGPU 和320GB主机内存,是深度学习训练的首选。
GN10Xp 最大实例规格具备1256 TFLOPS 单精度浮点运算能力,支持 Tensor Core 加速,单卡搭载32GB显存,GPU 卡之间通过300GB/s的 NVLink 高速互连。强大的计算与数据吞吐能力大大缩短训练周期,使得复杂模型的快速迭代成为可能,人工智能相关业务得以把握先机。
腾讯云GPU云服务器,管理很简单GPU云服务器采用和云服务器CVM一致的管理方式,无需跳板机登录,简单易用。清晰的显卡驱动的安装、部署指引,免去高学习成本。而且节约成本,你无需预先采购、准备硬件资源,一次性购买,免除硬件更新带来的额外费用,有效降低基础设施建设投入。目前,腾讯云的GPU云服务器已全面支持包年包月计费和按量计费,你可以根据需要选择计费模式。不一定,深度学习可以在本地计算机上运行,也可以在服务器上运行。但是,通常情况下,深度学习需要处理大量的数据和复杂的计算,因此需要比普通计算机更高效的硬件和更大的存储空间。因此,一些公司和组织通常会使用高性能计算机(HPC)或云计算平台来运行深度学习任务。
在本地运行深度学习任务的主要优点是可以对计算机进行更好的控制,可以使用自己的硬件和软件。此外,本地计算机可以更好地保护数据的隐私和安全性。但是,本地计算机的计算能力和存储空间通常受限,因此可能无法满足大规模深度学习任务的需求。
使用服务器或云计算平台运行深度学习任务的主要优点是可以获得更高的计算能力和更大的存储空间。此外,使用云计算平台可以根据需要调整计算资源的规模,从而更好地应对不同规模的深度学习任务。但是,使用云计算平台需要支付相应的费用,并且需要注意数据隐私和安全性的保护。阿里云设置一个psk,步骤一:安装服务
打开服务器管理器,然后单击 角色 > 添加角色。
勾选网络策略和访问服务。
在 结果 模块中确认安装成功。
步骤二:配置服务
在 路由和远程访问页面,右键单击实例,然后单击 配置并启用路由和远程访问。
勾选启用的服务。
展开以后,右键单击 NAT -新增接口,选择 本地接口 > 本地连接2,并勾选 在此接口上启用NAT(本地连接2是公网网卡)。
右键单击 NAT > 新增接口 > 本地连接 > 专用接口连接虚拟专用网络(本地连接是内网网卡)。
右键单击 路由和远程访问 - 属性 > IPv4 > 静态地址池 (用于指定客户机拨入后,分配的IP范围)。
创建一个用户,以 sky 为例。在属性菜单中,单击 拨入,然后勾选 允许访问 和 不回拨。
创建完成后,使用客户机上创建连接。
输入服务器的内网IP地址。
配置完成之后,点击连接, 访问外网进行测试。
深度学习是需要配置专门的GPU服务器的:
深度学习的电脑配置要求:
1、数据存储要求
在一些深度学习案例中,数据存储会成为明显的瓶颈。做深度学习首先需要一个好的存储系统,将历史资料保存起来。
主要任务:历史数据存储,如:文字、图像、声音、视频、数据库等。
数据容量:提供足够高的存储能力。
读写带宽:多硬盘并行读写架构提高数据读写带宽。
接口:高带宽,同时延迟低。
传统解决方式:专门的存储服务器,借助万兆端口访问。
缺点:带宽不高,对深度学习的数据读取过程时间长(延迟大,两台机器之间数据交换),成本还巨高。
2、CPU要求
当你在GPU上跑深度网络时,CPU进行的计算很少,但是CPU仍然需要处理以下事情:
(1)数据从存储系统调入到内存的解压计算。
(2)GPU计算前的数据预处理。
(3)在代码中写入并读取变量,执行指令如函数调用,创建小批量数据,启动到GPU的数据传输。
(4)GPU多卡并行计算前,每个核负责一块卡的所需要的数据并行切分处理和控制。
(5)增值几个变量、评估几个布尔表达式、在GPU或在编程里面调用几个函数——所有这些会取决于CPU核的频率,此时唯有提升CPU频率。
传统解决方式:CPU规格很随意,核数和频率没有任何要求。
3、GPU要求
如果你正在构建或升级你的深度学习系统,你最关心的应该也是GPU。GPU正是深度学习应用的核心要素——计算性能提升上,收获巨大。
主要任务:承担深度学习的数据建模计算、运行复杂算法。
传统架构:提供1~8块GPU。
4、内存要求
至少要和你的GPU显存存大小相同的内存。当然你也能用更小的内存工作,但是,你或许需要一步步转移数据。总而言之,如果钱够而且需要做很多预处理,就不必在内存瓶颈上兜转,浪费时间。
主要任务:存放预处理的数据,待GPU读取处理,中间结果存放。
深度学习需要强大的电脑算力,因此对电脑的硬件配置自然是超高的,那么现在普通的高算力电脑需要高配置硬件。
珍岛GPU云服务器。珍岛GPU云服务器适用于深度学习,针对AI,数据分析在各种规模上实现出色的加速,应对极其严峻的计算挑战,同时珍岛云提供多种GPU实例规格。深度学习起源于神经网络,但现在已超越了这个框架。至今已有数种深度学习框架,如深度神经网络、卷积神经网络和深度置信网络和递归神经网络等,已被应用计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。
深度学习的动机在于建立可以模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像、文本和声音等。深度学习通过学习一种深层非线性网络结构,只需简单的网络结构即可实现复杂函数的逼近,并展现了强大的从大量无标注样本集中学习数据集本质特征的能力。深度学习能够获得可更好地表示数据的特征,同时由于模型的层次深(通常有5层、6层,甚至10多层的隐层节点,百度“深”的好处是可以控制隐层节点的数目为输入节点数目的多项式倍而非多达指数倍)、表达能力强,因此有能力表示大规模数据。
蓝海大脑作为深度学习服务器的专业厂商,建议您选择深度学习服务器时需要注意以下几点:
1深度学习需要大量的并行计算资源,而且动辄计算几天甚至数周,而英伟达NVIDIA、英特尔Intel、AMD 显卡(GPU)恰好适合这种工作,提供几十上百倍的加速,性能强劲的GPU能在几个小时内完成原本CPU需要数月完成的任务,所以目前深度学习乃至于机器学习领域已经全面转向GPU架构,使用GPU完成训练任务。
2如今即使使用GPU的深度学习服务器也要持续数天乃至数月(取决于数据规模和深度学习网络模型),需要使用单独的设备保障,保证训练任务能够7x24小时长期稳定运行。
3独立的深度学习工作站(服务器)可以方便实现实验室计算资源共享,多用户可以在个人电脑编写程序,远程访问到深度学习服务器上排队使用计算资源,减少购买设备的开支并且避免了在本地计算机配置复杂的软件环境。
蓝海大脑通过多年的努力,攻克了各项性能指标、外观结构设计和产业化生产等关键技术问题,成功研制出蓝海大脑深度学习水冷工作站 HD210 系列。该产品图形处理速度快,支持 GPU 卡热插拔,具有高性价比,低噪音等特点,外形美观,满足了人工智能企业对图形、视频等信息的强大计算处理技术的需求。更好地为深度学习训练服务。
型号 蓝海大脑深度学习服务器
英特尔
处理器 Intel Xeon Gold 6240R 24C/48T,24GHz,3575MB,DDR4 2933,Turbo,HT,165W1TB
Intel Xeon Gold 6258R 28C/56T,27GHz,3855MB,DDR4 2933,Turbo,HT,205W1TB
Intel Xeon W-3265 24C/48T 27GHz 33MB 205W DDR4 2933 1TB
Intel Xeon Platinum 8280 28C/56T 27GHz 385MB,DDR4 2933,Turbo,HT 205W 1TB
Intel Xeon Platinum 9242 48C/96T 38GHz 715MB L2,DDR4 3200,HT 350W 1TB
Intel Xeon Platinum 9282 56C/112T 38GHz 715MB L2,DDR4 3200,HT 400W 1TB
AMD
处理器 AMD锐龙Threadripper Pro 3945WX 40GHz/12核/64M/3200/280W
AMD锐龙Threadripper Pro 3955WX 39GHz/16核/64M/3200/280W
AMD锐龙Threadripper Pro 3975WX 35GHz/32核/128M/3200/280W
AMD锐龙Threadripper Pro 3995WX 27GHz/64核/256M/3200/280W
AMD锐龙Threadripper Pro 5945WX 41G 12核/64M/3200/280W
AMD锐龙Threadripper Pro 5955WX 40G 16核/64M/3200/280W
AMD锐龙Threadripper Pro 5965WX 38G 24核/128M/3200/280W
AMD锐龙Threadripper Pro 5975WX 36G 32核/128M/3200/280W
AMD锐龙Threadripper Pro 5995WX 27G 64核/256M/3200/280W
显卡 NVIDIA A100×4, NVIDIA GV100×4
NVIDIA RTX 3090×4, NVIDIA RTX 3090TI×4,
NVIDIA RTX 8000×4, NVIDIA RTX A6000×4,
NVIDIA Quadro P2000×4,NVIDIA Quadro P2200×4
硬盘 NVMe2 SSD: 512GB,1TB; M2 PCIe - Solid State Drive (SSD),
SATA SSD: 1024TB, 2048TB, 5120TB
SAS:10000rpm&15000rpm,600GB,12TGB,18TB
HDD : 1TB,2TB,4TB,6TB,10TB
外形规格 立式机箱
210尺寸mm(高深宽) : 726 x 616 x 266
210A尺寸mm(高深宽) : 666 x 626 x 290
210B尺寸mm(高深宽) : 697 x 692 x 306
声卡:71通道田声卡
机柜安装 : 前置机柜面板或倒轨(可选)
电源 功率 : 1300W×2; 2000W×1
软件环境 可预装 CUDA、Driver、Cudnn、NCCL、TensorRT、Python、Opencv 等底层加速库、选装 Tensorflow、Caffe、Pytorch、MXnet 等深度学习框架。
前置接口 USB32 GEN2 Type-C×4
指承灯电和硬盘LED
灵动扩展区 : 29合1读卡器,eSATA,1394,PCIe接口(可选)
读卡器 : 9合1SD读卡器(可选)
模拟音频 : 立体声、麦克风
后置接口 PS2接口 : 可选
串行接口 : 可选
USB32 GEN2 Type-C×2
网络接口 : 双万兆 (RJ45)
IEEE 1394 : 扩展卡口
模拟音频 : 集成声卡 3口
连接线 专用屏蔽电缆(信号电缆和电源电缆)
资料袋 使用手册、光盘1张、机械键盘、鼠标、装箱单、产品合格证等
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)