大数据数量庞大,格式多样化。大量数据由家庭、制造工厂和办公场所的各种设备、互联网事务交易、社交网络的活动、自动化传感器、移动设备以及科研仪器等生成。它的爆炸式增长已超出了传统IT基础架构的处理能力,给企业和社会带来严峻的数据管理问题。因此必须开发新的数据架构,围绕“数据收集、数据管理、数据分析、知识形成、智慧行动”的全过程,开发使用这些数据,释放出更多数据的隐藏价值。
一、大数据建设思路
1)数据的获得
大数据产生的根本原因在于感知式系统的广泛使用。随着技术的发展,人们已经有能力制造极其微小的带有处理功能的传感器,并开始将这些设备广泛的布置于社会的各个角落,通过这些设备来对整个社会的运转进行监控。这些设备会源源不断的产生新数据,这种数据的产生方式是自动的。因此在数据收集方面,要对来自网络包括物联网、社交网络和机构信息系统的数据附上时空标志,去伪存真,尽可能收集异源甚至是异构的数据,必要时还可与历史数据对照,多角度验证数据的全面性和可信性。
2)数据的汇集和存储
互联网是个神奇的大网,大数据开发和软件定制也是一种模式,这里提供最详细的报价,如果你真的想做,可以来这里,这个手机的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了
数据只有不断流动和充分共享,才有生命力。应在各专用数据库建设的基础上,通过数据集成,实现各级各类信息系统的数据交换和数据共享。 数据存储要达到低成本、低能耗、高可靠性目标,通常要用到冗余配置、分布化和云计算技术,在存储时要按照一定规则对数据进行分类,通过过滤和去重,减少存储量,同时加入便于日后检索的标签。
3)数据的管理
大数据管理的技术也层出不穷。在众多技术中,有6种数据管理技术普遍被关注,即分布式存储与计算、内存数据库技术、列式数据库技术、云数据库、非关系型的数据库、移动数据库技术。其中分布式存储与计算受关注度最高。上图是一个图书数据管理系统。
4)数据的分析
数据分析处理:有些行业的数据涉及上百个参数,其复杂性不仅体现在数据样本本身,更体现在多源异构、多实体和多空间之间的交互动态性,难以用传统的方法描述与度量,处理的复杂度很大,需要将高维图像等多媒体数据降维后度量与处理,利用上下文关联进行语义分析,从大量动态而且可能是模棱两可的数据中综合信息,并导出可理解的内容。大数据的处理类型很多,主要的处理模式可以分为流处理和批处理两种。批处理是先存储后处理,而流处理则是直接处理数据。挖掘的任务主要是关联分析、聚类分析、分类、预测、时序模式和偏差分析等。
5)大数据的价值:决策支持系统
大数据的神奇之处就是通过对过去和现在的数据进行分析,它能够精确预测未来;通过对组织内部的和外部的数据整合,它能够洞察事物之间的相关关系;通过对海量数据的挖掘,它能够代替人脑,承担起企业和社会管理的职责。
6)数据的使用
大数据有三层内涵:一是数据量巨大、来源多样和类型多样的数据集;二是新型的数据处理和分析技术;三是运用数据分析形成价值。大数据对科学研究、经济建设、社会发展和文化生活等各个领域正在产生革命性的影响。大数据应用的关键,也是其必要条件,就在于"IT"与"经营"的融合,当然,这里的经营的内涵可以非常广泛,小至一个零售门店的经营,大至一个城市的经营。
二、大数据基本架构
基于上述大数据的特征,通过传统IT技术存储和处理大数据成本高昂。一个企业要大力发展大数据应用首先需要解决两个问题:一是低成本、快速地对海量、多类别的数据进行抽取和存储;二是使用新的技术对数据进行分析和挖掘,为企业创造价值。因此,大数据的存储和处理与云计算技术密不可分,在当前的技术条件下,基于廉价硬件的分布式系统(如Hadoop等)被认为是最适合处理大数据的技术平台。
Hadoop是一个分布式的基础架构,能够让用户方便高效地利用运算资源和处理海量数据,目前已在很多大型互联网企业得到了广泛应用,如亚马逊、Facebook和Yahoo等。其是一个开放式的架构,架构成员也在不断扩充完善中,通常架构如图2所示:
Hadoop体系架构
(1)Hadoop最底层是一个HDFS(Hadoop Distributed File System,分布式文件系统),存储在HDFS中的文件先被分成块,然后再将这些块复制到多个主机中(DataNode,数据节点)。
(2)Hadoop的核心是MapReduce(映射和化简编程模型)引擎,Map意为将单个任务分解为多个,而Reduce则意为将分解后的多任务结果汇总,该引擎由JobTrackers(工作追踪,对应命名节点)和TaskTrackers(任务追踪,对应数据节点)组成。当处理大数据查询时,MapReduce会将任务分解在多个节点处理,从而提高了数据处理的效率,避免了单机性能瓶颈限制。
(3)Hive是Hadoop架构中的数据仓库,主要用于静态的结构以及需要经常分析的工作。Hbase主要作为面向列的数据库运行在HDFS上,可存储PB级的数据。Hbase利用MapReduce来处理内部的海量数据,并能在海量数据中定位所需的数据且访问它。
(4)Sqoop是为数据的互 *** 作性而设计,可以从关系数据库导入数据到Hadoop,并能直接导入到HDFS或Hive。
(5)Zookeeper在Hadoop架构中负责应用程序的协调工作,以保持Hadoop集群内的同步工作。
(6)Thrift是一个软件框架,用来进行可扩展且跨语言的服务的开发,最初由Facebook开发,是构建在各种编程语言间无缝结合的、高效的服务。
Hadoop核心设计
Hbase——分布式数据存储系统
Client:使用HBase RPC机制与HMaster和HRegionServer进行通信
Zookeeper:协同服务管理,HMaster通过Zookeepe可以随时感知各个HRegionServer的健康状况
HMaster: 管理用户对表的增删改查 *** 作
HRegionServer:HBase中最核心的模块,主要负责响应用户I/O请求,向HDFS文件系统中读写数据
HRegion:Hbase中分布式存储的最小单元,可以理解成一个Table
HStore:HBase存储的核心。由MemStore和StoreFile组成。
HLog:每次用户 *** 作写入Memstore的同时,也会写一份数据到HLog文件
结合上述Hadoop架构功能,大数据平台系统功能建议如图所示:
应用系统:对于大多数企业而言,运营领域的应用是大数据最核心的应用,之前企业主要使用来自生产经营中的各种报表数据,但随着大数据时代的到来,来自于互联网、物联网、各种传感器的海量数据扑面而至。于是,一些企业开始挖掘和利用这些数据,来推动运营效率的提升。
数据平台:借助大数据平台,未来的互联网络将可以让商家更了解消费者的使用惯,从而改进使用体验。基于大数据基础上的相应分析,能够更有针对性的改进用户体验,同时挖掘新的商业机会。
数据源:数据源是指数据库应用程序所使用的数据库或者数据库服务器。丰富的数据源是大数据产业发展的前提。数据源在不断拓展,越来越多样化。如:智能汽车可以把动态行驶过程变成数据,嵌入到生产设备里的物联网可以把生产过程和设备动态状况变成数据。对数据源的不断拓展不仅能带来采集设备的发展,而且可以通过控制新的数据源更好地控制数据的价值。然而我国数字化的数据资源总量远远低于美欧,就已有有限的数据资源来说,还存在标准化、准确性、完整性低,利用价值不高的情况,这降低了数据的价值。
三、大数据的目标效果
通过大数据的引入和部署,可以达到如下效果:
1)数据整合
·统一数据模型:承载企业数据模型,促进企业各域数据逻辑模型的统一;
·统一数据标准:统一建立标准的数据编码目录,实现企业数据的标准化与统一存储;
·统一数据视图:实现统一数据视图,使企业在客户、产品和资源等视角获取到一致的信息。
2)数据质量管控
·数据质量校验:根据规则对所存储的数据进行一致性、完整性和准确性的校验,保证数据的一致性、完整性和准确性;
·数据质量管控:通过建立企业数据的质量标准、数据管控的组织、数据管控的流程,对数据质量进行统一管控,以达到数据质量逐步完善。
3)数据共享
·消除网状接口,建立大数据共享中心,为各业务系统提供共享数据,降低接口复杂度,提高系统间接口效率与质量;
·以实时或准实时的方式将整合或计算好的数据向外系统提供。
4)数据应用
·查询应用:平台实现条件不固定、不可预见、格式灵活的按需查询功能;
·固定报表应用:视统计维度和指标固定的分析结果的展示,可根据业务系统的需求,分析产生各种业务报表数据等;
·动态分析应用:按关心的维度和指标对数据进行主题性的分析,动态分析应用中维度和指标不固定。
四、总结
基于分布式技术构建的大数据平台能够有效降低数据存储成本,提升数据分析处理效率,并具备海量数据、高并发场景的支撑能力,可大幅缩短数据查询响应时间,满足企业各上层应用的数据需求。
过程:电脑将数据封装上一定的头部,转换成0,1等二进制信号在线路上传播给路由器,路由器根据路由表转发数据,直达目的主机,再拆去头部信息,将纯的数据交给应用程序。
c/s(客户机/服务器)有三个主要部件:数据库服务器、客户应用程序和网络。服务器负责有效地管理系统的资源,其任务集中于:
1数据库安全性的要求
2数据库访问并发性的控制
3数据库前端的客户应用程序的全局数据完整性规则
4数据库的备份与恢复
客户端应用程序的的主要任务是:
1提供用户与数据库交互的界面
2向数据库服务器提交用户请求并接收来自数据库服务器的信息
3利用客户应用程序对存在于客户端的数据执行应用逻辑要求
4网络通信软件的主要作用是,完成数据库服务器和客户应用程序之间的数据传输。
三层C/S结构是将应用功能分成表示层、功能层和数据层三部分。
解决方案是:对这三层进行明确分割,并在逻辑上使其独立。
在三层C/S中,表示层是应用的用户接口部分,它担负着用户与应用间的对话功能。它用于检查用户从键盘等输入的数据,显示应用输出的数据。为使用户能直观地进行 *** 作,一般要使用图形用户接口(GUI), *** 作简单、易学易用。在变更用户接口时,只需改写显示控制和数据检查程序,而不影响其他两层。检查的内容也只限于数据的形式和值的范围,不包括有关业务本身的处理逻辑。
功能层相当于应用的本体,它是将具体的业务处理逻辑地编入程序中。表示层和功能层之间的数据交往要尽可能简洁。
数据层就是DBMS,负责管理对数据库数据的读写。DBMS必须能迅速执行大量数据的更新和检索。现在的主流是关系数据库管理系统(RDBMS)。因此一般从功能层传送到数据层的要求大都使用SQL语言。
在三层或N层C/S结构中,中间件(Middleware)是最重要的部件。所谓中间件是一个用API定义的软件层,是具有强大通信能力和良好可扩展性的分布式软件管理框架。它的功能是在客户机和服务器或者服务器和服务器之间传送数据,实现客户机群和服务器群之间的通信。其工作流程是:在客户机里的应用程序需要驻留网络上某个服务器的数据或服务时,搜索此数据的C/S应用程序需访问中间件系统。该系统将查找数据源或服务,并在发送应用程序请求后重新打包响应,将其传送回应用程序。随着网络计算模式的发展,中间件日益成为软件领域的新的热点。中间件在整个分布式系统中起数据总线的作用,各种异构系统通过中间件有机地结合成一个整体。每个C/S环境,从最小的LAN环境到超级网络环境,都使用某种形式的中间件。无论客户机何时给服务器发送请求,也无论它何时应用存取数据库文件,都有某种形式的中间件传递C/S链路,用以消除通信协议、数据库查询语言、应用逻辑与 *** 作系统之间潜在的不兼容问题。
三层C/S结构的优势主要表现在以下几个方面:
1利用单一的访问点,可以在任何地方访问站点的数据库;
2对于各种信息源,不论是文本还是图形都采用相同的界面;
3所有的信息,不论其基于的平台,都可以用相同的界面访问;
4可跨平台 *** 作;
5减少整个系统的成本;
6维护升级十分方便;
7具有良好的开放性;
8系统的可扩充性良好;
9进行严密的安全管理;
10系统管理简单,可支持异种数据库,有很高的可用性。
机顶盒服务器服务框架错误原因如下。1、在装系统时没有装好。
2、电脑的有些硬件驱动没有装好。
3、系统的缓存不够。
4、某些应用程序在安装有些文件会与系统文件相互共用,删除或损坏这个程序的话,也就等于损坏了系统计算机出现错误代码大部分是以上四个情况导致的,建不同的情况进行修复。
随着服务器开发技术的不断发展,微服务架构技术在各个方面都有了很大的技术突破。今天,电脑培训就一起来了解一下,在互联网大环境下的微服务系统架构的发展趋势。
1服务网格白热化
服务网格是一个专注于服务间通信的基础设施层,也是目前受关注的与云原生有关的话题。随着容器的普及,服务拓扑变得越来越动态化,这对网络功能提出了更多的要求。服务网格通过服务发现、路由、负载均衡、健康检测和可观察性来管理流量,简化容器与生俱来的复杂性。
随着HAProxy、traefik和NGINX逐步把自己定位成数据平面,服务网格也变得越来越流行。尽管服务网格还没有得到大规模部署,但确实有些企业已经在生产环境中运行服务网格。另外,服务网格不仅可以用在微服务或Kubernetes环境中,也可以被用在VM和无服务器架构的环境中。例如,美国国家生物技术信息中心虽然没有使用容器,但他们使用了Linkerd。
2事件驱动架构的崛起
随着业务场景的不断变化,我们已经看到了基于推送或事件的架构正在成为一种趋势。服务向订阅事件的观察者容器发送事件,容器异步做出响应,事件发送者可能对此一无所知。与请求响应式架构不同的是,在基于事件的系统架构中,发起事件的容器并不依赖下游的容器,它们的处理过程和加载的事务与下游容器的可用性或完成情况无关。这种架构的另一个好处是,开发者可以更加独立地设计各自的服务。
3安全模型的变化
因为对内核访问方面的限制,部署在容器中的应用程序相对安全。在VM环境中,虚拟设备驱动器是暴露可见性的地方。而在容器环境里, *** 作系统提供了系统调用,信号源也变得更加丰富。之前,管理员需要在VM中安装代理,但那样太复杂了,需要管理太多的东西。容器提供了更清晰的可见性,相比VM,与容器的集成会更加容易。
4从REST到GraphQL
GraphQL是Facebook于2012年创建并于2023年开源的一套查询语言API规范。GraphQL的类型系统允许开发者自己定义数据schema,可以增加新字段,也可以删除旧字段,这些都不会影响已有的查询,也不需要修改客户端。GraphQL非常强大,因为它没有与特定的数据库或存储引擎绑定在一起。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)