大数据精准营销如何做

大数据精准营销如何做,第1张

精准营销的实质是根据目标客户的个性化需求设计产品和服务,而大数据就是手段。大数据精准营销做法如下:

1、以用户为导向。

真正的营销从来都是以用户为中心的,而大数据把用户实实在在“画”在了眼前,营销者可以根据数据库内的数据构建用户画像,来了解用户消费行为习惯、以及年龄、收入等各种情况,从而对产品、用户定位、营销做出指导性的调整。

2、一对一个性化营销。

很多销售在推销产品时常常会遇到这样的问题:产品是一样的,但是用户的需求是各不相同的,如何把相同的产品卖给不同的用户?这就需要我们进行“一对一”个性化营销。利用大数据分析,可以构建完善的用户画像,了解消费者,从而做出精准的个性化营销。

3、深度洞察用户。

深度洞察用户,挖掘用户潜在需求,是数据营销的基础。利用数据标签,可以准确获知用户的潜在消费需求。

例如:我们得知一位用户曾购买过奶粉,那么我们可以得知,家里有小孩,相应的可以向他推送早教课程等适合婴幼儿的产品。洞察消费者需求后再进行投放,营销的效果将比撒网式有效且更易成交。

4、营销的科学性。

实践证明,数据指导下的精准营销相对于传统营销来说更具有科学性。向用户“投其所好”,向意向客户推荐他们感兴趣的东西,远远要比毫无目标的被动式营销更具成效。

大数据精准营销包含方面

1、用户画像

用户画像是根据用户社会属性、生活习惯和消费行为等信息而抽象出的一个标签化的用户模型。具体包含以下几个维度:

用户固定特征:性别,年龄,地域,教育水平,生辰八字,职业,星座。

用户兴趣特征:兴趣爱好,使用APP,网站,浏览/收藏/评论内容,品牌偏好,产品偏好。

用户社会特征:生活习惯,婚恋,社交/信息渠道偏好,宗教信仰,家庭成分。

用户消费特征:收入状况,购买力水平,商品种类,购买渠道喜好,购买频次。

用户动态特征:当下时间,需求,正在前往的地方,周边的商户,周围人群,新闻事件如何生成用户精准画像大致分成三步。

2、数据细分受众

在执行大数据分析的3小时内,就可以轻松完成以下的目标:精准挑选出1%的VIP顾客发送390份问卷,全部回收 问卷寄出3小时内回收35%的问卷 5天内就回收了超过目标数86%的问卷数所需时间和预算都在以往的10%以下。

3、预测

“预测”能够让你专注于一小群客户,而这群客户却能代表特定产品的大多数潜在买家。当我们采集和分析用户画像时,可以实现精准营销。这是最直接和最有价值的应用,广告主可以通过用户标签来发布广告给所要触达的用户。

这里面又可以通过上图提到的搜索广告,展示社交广告,移动广告等多渠道的营销策略,营销分析,营销优化以及后端CRM/供应链系统打通的一站式营销优化,全面提升ROI。

4、精准推荐

大数据最大的价值不是事后分析,而是预测和推荐,我就拿电商举例,"精准推荐"成为大数据改变零售业的核心功能。

数据整合改变了企业的营销方式,现在经验已经不是累积在人的身上,而是完全依赖消费者的行为数据去做推荐。未来,销售人员不再只是销售人员,而能以专业的数据预测,搭配人性的亲切互动推荐商品,升级成为顾问型销售。

著名广告大师约翰·沃纳梅克曾经说过一句同样著名的话:我知道我的广告费有一半被浪费了,但我不知道是哪一半没浪费了。

最近不少来咨询小K的品牌商,都聚焦在客户画像、会员体系、自动化营销上,在品牌红利、流量红利结束后,企业的诉求从粗暴追求曝光、流量、新客,回归到了精细化营销需求: 如何做到精准触达高价值客户,达到有效的业务增长?

而上述的聚焦问题,无一都离不开大数据。

1、数据拷问

大数据作用主要在于描绘准确客户画像、构建完整的会员体系,并且最终可进行可持续的自动化精准营销,其对于市场、营销人员而言直接体现在留存、转化等目标KPI的提升上。正如曾任小米顾问的爆品专家金错刀在《爆品战略》中所提到,对于数据不仅仅只是盲目利用,要擅长“数据拷问”,挖掘真实、有用的数据并且为我所用。而金错刀认为数据拷问有以下三个关键维度,均可套用到营销上:

关键客户数据: 找到营销中起决定作用的用户/客户数据。如RFM模型中客户价值数据、客户画像数据等。

横比和纵比: 对于已有的数据,通过与友商相关数据对比(横向)和与品牌自身历史营销事件数据对比(纵比)。

细分和溯源: 尽可能多的维度去细分数据,并且从源头分析客户消费行为,这主要为了后续系列精准营销做铺垫,节约营销资源。

2、Knight案例

Knight利用大数据技术帮助某著名饮食策划公司打造忠诚度会员计划:

该饮食策划公司从19世纪80年代起已涉足餐饮行业,合作客户包括麦当劳、百盛餐饮、索菲特饭店、俏江南、星巴克等企业。

客户挑战:

原会员系统割裂封闭,难以实现与客户互动和管理

无法与客户建立持续互动,有效提升客户忠诚度和销量

需要统一平台支持会员管理业务

解决方案:

打造全渠道客户忠诚度管理平台

接入打通客户沟通渠道,提升客户体验

持续客户互动,社群营销,增强客户粘性和活跃度

追踪用户数据,提升营销精准度

项目成效:

打通信息孤岛,实现数据实时获取、共享和分析

多渠道接入客户互动,提升用户体验

完整的客户忠诚度数据平台,增加客户粘性

3、Knight大数据特点

客户触点广: 涵盖微信、自有门店、微商城、天猫、京东等主流渠道,进行全域营销

洞察维度多样化: 可准确分辨客户是否品牌官方会员、会员等级、是否品牌方旗下任何公众号粉丝等

信息来源准确: 可精准收录客户来源渠道及详细客户信息

客群细分洞察: 根据客群价值做客户旅程阶段、价值度、忠诚度、活跃度等客群细分,为精准营销提供最有效数据依据

自动化、自定义、多样化的客户标签: 科学预设标签,如触达方式、社交行为、积分使用偏好等;系统智能自动打标签;根据需求自定义添加标签分类,让工具更贴合品牌营销需求


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/7323472.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-04
下一篇 2023-04-04

发表评论

登录后才能评论

评论列表(0条)

保存