最近不少来咨询小K的品牌商,都聚焦在客户画像、会员体系、自动化营销上,在品牌红利、流量红利结束后,企业的诉求从粗暴追求曝光、流量、新客,回归到了精细化营销需求: 如何做到精准触达高价值客户,达到有效的业务增长?
而上述的聚焦问题,无一都离不开大数据。
1、数据拷问
大数据作用主要在于描绘准确客户画像、构建完整的会员体系,并且最终可进行可持续的自动化精准营销,其对于市场、营销人员而言直接体现在留存、转化等目标KPI的提升上。正如曾任小米顾问的爆品专家金错刀在《爆品战略》中所提到,对于数据不仅仅只是盲目利用,要擅长“数据拷问”,挖掘真实、有用的数据并且为我所用。而金错刀认为数据拷问有以下三个关键维度,均可套用到营销上:
关键客户数据: 找到营销中起决定作用的用户/客户数据。如RFM模型中客户价值数据、客户画像数据等。
横比和纵比: 对于已有的数据,通过与友商相关数据对比(横向)和与品牌自身历史营销事件数据对比(纵比)。
细分和溯源: 尽可能多的维度去细分数据,并且从源头分析客户消费行为,这主要为了后续系列精准营销做铺垫,节约营销资源。
2、Knight案例
Knight利用大数据技术帮助某著名饮食策划公司打造忠诚度会员计划:
该饮食策划公司从19世纪80年代起已涉足餐饮行业,合作客户包括麦当劳、百盛餐饮、索菲特饭店、俏江南、星巴克等企业。
客户挑战:
原会员系统割裂封闭,难以实现与客户互动和管理
无法与客户建立持续互动,有效提升客户忠诚度和销量
需要统一平台支持会员管理业务
解决方案:
打造全渠道客户忠诚度管理平台
接入打通客户沟通渠道,提升客户体验
持续客户互动,社群营销,增强客户粘性和活跃度
追踪用户数据,提升营销精准度
项目成效:
打通信息孤岛,实现数据实时获取、共享和分析
多渠道接入客户互动,提升用户体验
完整的客户忠诚度数据平台,增加客户粘性
3、Knight大数据特点
客户触点广: 涵盖微信、自有门店、微商城、天猫、京东等主流渠道,进行全域营销
洞察维度多样化: 可准确分辨客户是否品牌官方会员、会员等级、是否品牌方旗下任何公众号粉丝等
信息来源准确: 可精准收录客户来源渠道及详细客户信息
客群细分洞察: 根据客群价值做客户旅程阶段、价值度、忠诚度、活跃度等客群细分,为精准营销提供最有效数据依据
自动化、自定义、多样化的客户标签: 科学预设标签,如触达方式、社交行为、积分使用偏好等;系统智能自动打标签;根据需求自定义添加标签分类,让工具更贴合品牌营销需求
简单归纳起来,营销数据库具有以下作用:(l)选择和编辑顾客数据。收集、整理顾客的数据资料,构建顾客数据库。收集顾客的数据应包括顾客个人资料、交易记录等信息。
(2)选择适当的消费者。有针对性地进行沟通,提高反馈率,增加销量,从而降低营销成本。
(3)为使用营销数据库的公司提供这些消费者的状况,应用于邮件、电话、销售、服务、顾客忠诚计划和其他方法。
(4)反击竞争者的武器。数据库可以反映出与竞争者有联系的顾客特征,近而分析竞争者的优劣势,改进营销策略,提供比竞争者更好的产品和服务,增近与顾客的关系。
(5)及时的营销效果反馈,可以分析市场活动的短期和长期效果,并提出改进方法。
通过市场、销售和服务等一线人员获得的客户反馈,并把相关的市场调查资料整合,定期对市场的客户信息和反馈进行分析,帮助产品和服务在功能和销售方式上的改进;也可以帮助产品设计和研发部门做出前瞻性的分析和预测;也可以根据市场上的实时信息及时调整生产原材料的采购,或者调整生产的产品型号,控制和优化库存等等。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)